YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Transportation Engineering, Part A: Systems
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Transportation Engineering, Part A: Systems
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Optimal Ramp Metering Control for Weaving Segments Considering Dynamic Weaving Capacity Estimation

    Source: Journal of Transportation Engineering, Part A: Systems:;2014:;Volume ( 140 ):;issue: 011
    Author:
    Xu Wang
    ,
    Md. Hadiuzzaman
    ,
    Jie Fang
    ,
    Tony Z. Qiu
    ,
    Xinping Yan
    DOI: 10.1061/(ASCE)TE.1943-5436.0000718
    Publisher: American Society of Civil Engineers
    Abstract: On freeway corridors, traffic flow is limited by active bottlenecks. Weaving maneuvers (i.e., intensive lane changes) are a major cause of bottlenecks during high-demand periods. To relieve bottleneck severity, ramp metering (RM) is implemented as an active traffic control method. Ample research has been devoted to developing RM control algorithms and to exploring weaving impacts; however, RM control that is considerate of dynamic weaving impact and its evaluation has received little attention in the published literature. This paper aims to bridge that gap by proposing a proactive control algorithm that uses as inputs dynamic weaving capacity (as opposed to traditional fixed capacity values) for RM control at weaving segments. The control goals are to reduce networkwide travel time and improve traffic flow. Capacity and capacity drop were estimated through fundamental diagrams (FDs). Then, capacity drop sensitivities to on-ramp and mainline demand were analyzed within a field-data-based microsimulation model. The findings were applied to dynamically estimate weaving capacity within a macroscopic traffic flow model. The proposed traffic flow model conducted estimation in a model predictive control (MPC) framework. The RM rates were optimized by sequential quadratic programming (SQP). The proposed RM algorithm was evaluated in macrosimulation and compared with a no-control scenario as well as with a control scenario that used static (as opposed to dynamic) weaving capacity. This analysis contributes to efficient and effective field applications and freeway operational improvements.
    • Download: (2.557Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Optimal Ramp Metering Control for Weaving Segments Considering Dynamic Weaving Capacity Estimation

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/72777
    Collections
    • Journal of Transportation Engineering, Part A: Systems

    Show full item record

    contributor authorXu Wang
    contributor authorMd. Hadiuzzaman
    contributor authorJie Fang
    contributor authorTony Z. Qiu
    contributor authorXinping Yan
    date accessioned2017-05-08T22:10:17Z
    date available2017-05-08T22:10:17Z
    date copyrightNovember 2014
    date issued2014
    identifier other37067081.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/72777
    description abstractOn freeway corridors, traffic flow is limited by active bottlenecks. Weaving maneuvers (i.e., intensive lane changes) are a major cause of bottlenecks during high-demand periods. To relieve bottleneck severity, ramp metering (RM) is implemented as an active traffic control method. Ample research has been devoted to developing RM control algorithms and to exploring weaving impacts; however, RM control that is considerate of dynamic weaving impact and its evaluation has received little attention in the published literature. This paper aims to bridge that gap by proposing a proactive control algorithm that uses as inputs dynamic weaving capacity (as opposed to traditional fixed capacity values) for RM control at weaving segments. The control goals are to reduce networkwide travel time and improve traffic flow. Capacity and capacity drop were estimated through fundamental diagrams (FDs). Then, capacity drop sensitivities to on-ramp and mainline demand were analyzed within a field-data-based microsimulation model. The findings were applied to dynamically estimate weaving capacity within a macroscopic traffic flow model. The proposed traffic flow model conducted estimation in a model predictive control (MPC) framework. The RM rates were optimized by sequential quadratic programming (SQP). The proposed RM algorithm was evaluated in macrosimulation and compared with a no-control scenario as well as with a control scenario that used static (as opposed to dynamic) weaving capacity. This analysis contributes to efficient and effective field applications and freeway operational improvements.
    publisherAmerican Society of Civil Engineers
    titleOptimal Ramp Metering Control for Weaving Segments Considering Dynamic Weaving Capacity Estimation
    typeJournal Paper
    journal volume140
    journal issue11
    journal titleJournal of Transportation Engineering, Part A: Systems
    identifier doi10.1061/(ASCE)TE.1943-5436.0000718
    treeJournal of Transportation Engineering, Part A: Systems:;2014:;Volume ( 140 ):;issue: 011
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian