YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Transportation Engineering, Part A: Systems
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Transportation Engineering, Part A: Systems
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Modeling Movement Direction Choice and Collision Avoidance in Agent-Based Model for Pedestrian Flow

    Source: Journal of Transportation Engineering, Part A: Systems:;2015:;Volume ( 141 ):;issue: 006
    Author:
    S. B. Liu
    ,
    S. M. Lo
    ,
    K. L. Tsui
    ,
    W. L. Wang
    DOI: 10.1061/(ASCE)TE.1943-5436.0000762
    Publisher: American Society of Civil Engineers
    Abstract: Agent-based microscopic pedestrian-flow simulation models are promising tools for designers or engineers to evaluate the level of safety or comfort of crowded pedestrian traffic facilities. Existing models tend to simulate movement direction choice behaviors of a virtual agent based on a joint effect of several physical, psychological, and sociological factors dominating the real-world pedestrian walking behaviors. Challenging questions remain for this type of model, including how to control and balance the influences among these behavioral factors and how to naturally avoid collisions without losing the effect of the behavior factors considered. This article presents an improved utility-maximization approach to determine the movement direction of individuals in an agent-based pedestrian-flow simulation model. A new utility function is proposed. An explicit collision detection and avoidance technique is used as a supplementary rule together with the utility maximization method to improve the collision avoidance behaviors in the model. Simulation experiments are carried out for detailed analyses of agent-movement direction-choice behaviors under the influence of utility values and behavioral factors. It is shown that the new utility function can control and balance the influences among the behavioral factors better and avoid unrealistic direction choices. In addition, simulations of intersecting pedestrian flow based a real pedestrian flow experiment are designed, and simulation results are compared with the experiment results. The comparison demonstrates the improvements of using the collision detection and avoidance technique, and shows that well-configured simulations could be close to the experiment both qualitatively and quantitatively.
    • Download: (10.13Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Modeling Movement Direction Choice and Collision Avoidance in Agent-Based Model for Pedestrian Flow

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/72729
    Collections
    • Journal of Transportation Engineering, Part A: Systems

    Show full item record

    contributor authorS. B. Liu
    contributor authorS. M. Lo
    contributor authorK. L. Tsui
    contributor authorW. L. Wang
    date accessioned2017-05-08T22:10:10Z
    date available2017-05-08T22:10:10Z
    date copyrightJune 2015
    date issued2015
    identifier other36874400.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/72729
    description abstractAgent-based microscopic pedestrian-flow simulation models are promising tools for designers or engineers to evaluate the level of safety or comfort of crowded pedestrian traffic facilities. Existing models tend to simulate movement direction choice behaviors of a virtual agent based on a joint effect of several physical, psychological, and sociological factors dominating the real-world pedestrian walking behaviors. Challenging questions remain for this type of model, including how to control and balance the influences among these behavioral factors and how to naturally avoid collisions without losing the effect of the behavior factors considered. This article presents an improved utility-maximization approach to determine the movement direction of individuals in an agent-based pedestrian-flow simulation model. A new utility function is proposed. An explicit collision detection and avoidance technique is used as a supplementary rule together with the utility maximization method to improve the collision avoidance behaviors in the model. Simulation experiments are carried out for detailed analyses of agent-movement direction-choice behaviors under the influence of utility values and behavioral factors. It is shown that the new utility function can control and balance the influences among the behavioral factors better and avoid unrealistic direction choices. In addition, simulations of intersecting pedestrian flow based a real pedestrian flow experiment are designed, and simulation results are compared with the experiment results. The comparison demonstrates the improvements of using the collision detection and avoidance technique, and shows that well-configured simulations could be close to the experiment both qualitatively and quantitatively.
    publisherAmerican Society of Civil Engineers
    titleModeling Movement Direction Choice and Collision Avoidance in Agent-Based Model for Pedestrian Flow
    typeJournal Paper
    journal volume141
    journal issue6
    journal titleJournal of Transportation Engineering, Part A: Systems
    identifier doi10.1061/(ASCE)TE.1943-5436.0000762
    treeJournal of Transportation Engineering, Part A: Systems:;2015:;Volume ( 141 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian