Identifying Household Water Use through Transient Signal ClassificationSource: Journal of Computing in Civil Engineering:;2016:;Volume ( 030 ):;issue: 002DOI: 10.1061/(ASCE)CP.1943-5487.0000476Publisher: American Society of Civil Engineers
Abstract: The research reported in this paper aims to develop a household water use identification method through signal pattern analysis. An experimental facility was constructed to simulate bathroom and kitchen water use. The data acquisition system used a volumetric water meter with pulsed output, pressure transducers, data acquisition with a Universal Serial Bus interface interconnected with the Cyble sensor and a laptop computer. The data analysis was performed using a pattern recognition algorithm to identify the hydraulic fixtures in use. Five classes of water use were considered, as follows: (1) kitchen faucet (KF), (2) washbasin faucet (WF), (3) bidet (BD), (4) shower (SH), and (5) toilet flush (TF). Two algorithms were used to identify the best classifier for the data, as follows: (1) multilayer perceptron, and (2) support vector machine (SVM). The fusion by majority vote regarding the results of SVM in the time domain showed the best accuracy; 92% accuracy for kitchen faucet, 94% for washbasin faucet, 94% for bidet, 100% for the shower, and 100% for toilet flush, thus supporting the use of signal signatures of flow and pressure in identifying the hydraulic fixtures in use.
|
Collections
Show full item record
contributor author | Giovana Almeida | |
contributor author | José Vieira | |
contributor author | Alfeu Sá Marques | |
contributor author | Alberto Cardoso | |
contributor author | Oswaldo Ludwig | |
date accessioned | 2017-05-08T22:10:08Z | |
date available | 2017-05-08T22:10:08Z | |
date copyright | March 2016 | |
date issued | 2016 | |
identifier other | 36791683.pdf | |
identifier uri | http://yetl.yabesh.ir/yetl/handle/yetl/72716 | |
description abstract | The research reported in this paper aims to develop a household water use identification method through signal pattern analysis. An experimental facility was constructed to simulate bathroom and kitchen water use. The data acquisition system used a volumetric water meter with pulsed output, pressure transducers, data acquisition with a Universal Serial Bus interface interconnected with the Cyble sensor and a laptop computer. The data analysis was performed using a pattern recognition algorithm to identify the hydraulic fixtures in use. Five classes of water use were considered, as follows: (1) kitchen faucet (KF), (2) washbasin faucet (WF), (3) bidet (BD), (4) shower (SH), and (5) toilet flush (TF). Two algorithms were used to identify the best classifier for the data, as follows: (1) multilayer perceptron, and (2) support vector machine (SVM). The fusion by majority vote regarding the results of SVM in the time domain showed the best accuracy; 92% accuracy for kitchen faucet, 94% for washbasin faucet, 94% for bidet, 100% for the shower, and 100% for toilet flush, thus supporting the use of signal signatures of flow and pressure in identifying the hydraulic fixtures in use. | |
publisher | American Society of Civil Engineers | |
title | Identifying Household Water Use through Transient Signal Classification | |
type | Journal Paper | |
journal volume | 30 | |
journal issue | 2 | |
journal title | Journal of Computing in Civil Engineering | |
identifier doi | 10.1061/(ASCE)CP.1943-5487.0000476 | |
tree | Journal of Computing in Civil Engineering:;2016:;Volume ( 030 ):;issue: 002 | |
contenttype | Fulltext |