YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Hydrologic Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Hydrologic Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Mathematical Modeling of Groundwater Flow and Solute Transport in Saturated Fractured Rock Using a Dual-Porosity Approach

    Source: Journal of Hydrologic Engineering:;2014:;Volume ( 019 ):;issue: 012
    Author:
    G. Suresh Kumar
    DOI: 10.1061/(ASCE)HE.1943-5584.0000986
    Publisher: American Society of Civil Engineers
    Abstract: The present paper addresses critical issues that describe the transient transfer of stored rock-matrix flow into high-permeable fractures and rate-limited diffusive solute flux into low-permeable rock matrix using a typical dual-porosity approach. An improved mathematical model is suggested that better describes fluid flow through a coupled fracture-matrix system using a dual-porosity approach. The suggested model differs from a conventional model as the fracture flow equation contains a hyperbolic term in addition to the conventional dispersive term. The matrix flow equation contains the coupling term that controls the transient nature of fluid exchange from the stored rock matrix into the hydraulic conductors. The Langmuir sorption isotherm is suggested to describe the limited sorption sites available on fracture walls, while the Freundlich sorption isotherm is recommended to describe the unlimited sorption sites available within the rock matrix. The dispersion mechanism in a coupled fracture-matrix dual-porosity system becomes more complex as the convective longitudinal dispersion coefficient diverges resulting from huge variations in mean velocities of streamlines between the fracture and rock matrix.
    • Download: (175.1Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Mathematical Modeling of Groundwater Flow and Solute Transport in Saturated Fractured Rock Using a Dual-Porosity Approach

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/72561
    Collections
    • Journal of Hydrologic Engineering

    Show full item record

    contributor authorG. Suresh Kumar
    date accessioned2017-05-08T22:09:39Z
    date available2017-05-08T22:09:39Z
    date copyrightDecember 2014
    date issued2014
    identifier other35811956.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/72561
    description abstractThe present paper addresses critical issues that describe the transient transfer of stored rock-matrix flow into high-permeable fractures and rate-limited diffusive solute flux into low-permeable rock matrix using a typical dual-porosity approach. An improved mathematical model is suggested that better describes fluid flow through a coupled fracture-matrix system using a dual-porosity approach. The suggested model differs from a conventional model as the fracture flow equation contains a hyperbolic term in addition to the conventional dispersive term. The matrix flow equation contains the coupling term that controls the transient nature of fluid exchange from the stored rock matrix into the hydraulic conductors. The Langmuir sorption isotherm is suggested to describe the limited sorption sites available on fracture walls, while the Freundlich sorption isotherm is recommended to describe the unlimited sorption sites available within the rock matrix. The dispersion mechanism in a coupled fracture-matrix dual-porosity system becomes more complex as the convective longitudinal dispersion coefficient diverges resulting from huge variations in mean velocities of streamlines between the fracture and rock matrix.
    publisherAmerican Society of Civil Engineers
    titleMathematical Modeling of Groundwater Flow and Solute Transport in Saturated Fractured Rock Using a Dual-Porosity Approach
    typeJournal Paper
    journal volume19
    journal issue12
    journal titleJournal of Hydrologic Engineering
    identifier doi10.1061/(ASCE)HE.1943-5584.0000986
    treeJournal of Hydrologic Engineering:;2014:;Volume ( 019 ):;issue: 012
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian