YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Elastoplastic Cross-Sectional Behavior of Composite Beams with High-Strength Steel: Analytical Modeling

    Source: Journal of Structural Engineering:;2015:;Volume ( 141 ):;issue: 010
    Author:
    Huiyong Ban
    ,
    Mark A. Bradford
    DOI: 10.1061/(ASCE)ST.1943-541X.0001208
    Publisher: American Society of Civil Engineers
    Abstract: Composite steel-concrete beams that use high-strength (HS) steel sections are more sustainable from an environmental low-carbon perspective than those that use mild steel because less steel is needed. Quantifying the elastoplastic cross-sectional behavior of composite beams using HS steel sections is important because HS steel has significant differences in its plastic properties when compared with conventional mild steel. It is also important to establish this behavior in order to apply the principles of rigid plastic design. This paper develops a new analytical model for the cross-sectional analysis of HS steel-concrete composite beams to elucidate this elastoplastic response, so as to ascertain the validity of applying rigid plastic design. Both material nonlinearity and partial shear connection are incorporated in the analysis. The constitutive model for the steel is specified by using a multilinear stress-strain relationship, and that of the concrete is based on a model in terms of its axial stress-strain relationship that is prescribed in Eurocode 4. The slip strain between the steel and concrete components at the interface is treated as being dependent on the curvature and the degree of shear connection. The equation of horizontal equilibrium is derived, from which the curvature and the corresponding strain distribution through the depth of the cross-section can be obtained, leading to the bending moment resisted by the cross section. Comparisons with experimental results, those from rigid plastic analysis as well as with numerical solutions, demonstrate that the analytical procedure is adequate and accurate, providing a much-needed analytical solution for establishing the moment-curvature response of composite beams with HS steel.
    • Download: (2.634Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Elastoplastic Cross-Sectional Behavior of Composite Beams with High-Strength Steel: Analytical Modeling

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/72421
    Collections
    • Journal of Structural Engineering

    Show full item record

    contributor authorHuiyong Ban
    contributor authorMark A. Bradford
    date accessioned2017-05-08T22:09:12Z
    date available2017-05-08T22:09:12Z
    date copyrightOctober 2015
    date issued2015
    identifier other34949462.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/72421
    description abstractComposite steel-concrete beams that use high-strength (HS) steel sections are more sustainable from an environmental low-carbon perspective than those that use mild steel because less steel is needed. Quantifying the elastoplastic cross-sectional behavior of composite beams using HS steel sections is important because HS steel has significant differences in its plastic properties when compared with conventional mild steel. It is also important to establish this behavior in order to apply the principles of rigid plastic design. This paper develops a new analytical model for the cross-sectional analysis of HS steel-concrete composite beams to elucidate this elastoplastic response, so as to ascertain the validity of applying rigid plastic design. Both material nonlinearity and partial shear connection are incorporated in the analysis. The constitutive model for the steel is specified by using a multilinear stress-strain relationship, and that of the concrete is based on a model in terms of its axial stress-strain relationship that is prescribed in Eurocode 4. The slip strain between the steel and concrete components at the interface is treated as being dependent on the curvature and the degree of shear connection. The equation of horizontal equilibrium is derived, from which the curvature and the corresponding strain distribution through the depth of the cross-section can be obtained, leading to the bending moment resisted by the cross section. Comparisons with experimental results, those from rigid plastic analysis as well as with numerical solutions, demonstrate that the analytical procedure is adequate and accurate, providing a much-needed analytical solution for establishing the moment-curvature response of composite beams with HS steel.
    publisherAmerican Society of Civil Engineers
    titleElastoplastic Cross-Sectional Behavior of Composite Beams with High-Strength Steel: Analytical Modeling
    typeJournal Paper
    journal volume141
    journal issue10
    journal titleJournal of Structural Engineering
    identifier doi10.1061/(ASCE)ST.1943-541X.0001208
    treeJournal of Structural Engineering:;2015:;Volume ( 141 ):;issue: 010
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian