YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Chemically Stabilized Soft Clays for Road-Base Construction

    Source: Journal of Materials in Civil Engineering:;2015:;Volume ( 027 ):;issue: 007
    Author:
    Xin Kang
    ,
    Gi-Chun Kang
    ,
    Kuang-Tsung Chang
    ,
    Louis Ge
    DOI: 10.1061/(ASCE)MT.1943-5533.0001156
    Publisher: American Society of Civil Engineers
    Abstract: Soft clays are widely distributed in Missouri, United States. Due to their relatively low strength and high compressibility, subgrade construction in soft clays has encountered many difficulties. In recent practice, the use of fly ash (FA) along with lime to tackle soft subgrade problems has shown promising results. The effectiveness of Class C FA and lime kiln dust (LKD) in clay subgrade stabilization is examined in this research. Scanning electron microscopic (SEM) analysis, proctor compaction tests, unconfined compression tests, and resilient modulus tests were carried out on the FA and LKD modified soil mixtures. Test specimens were prepared at optimum water content and tested at various curing periods. The test specimens were reconstituted by static compression. Test results revealed that the addition of Class C FA could increase the dry unit weight of the FA treated soil, enhance the unconfined compressive strength, and improve the resilient modulus. Regression equations were developed to correlate the resilient modulus with curing time. The mechanism of FA stabilization was discussed based on the SEM results and the measurement of the electrical conductivity of the FA-soil-water system. Correlations between the unconfined compressive strength and resilient modulus were developed. It is concluded that subgrade stabilization with Class C FA and LKD are cost-effective for road-base construction.
    • Download: (5.263Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Chemically Stabilized Soft Clays for Road-Base Construction

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/72383
    Collections
    • Journal of Materials in Civil Engineering

    Show full item record

    contributor authorXin Kang
    contributor authorGi-Chun Kang
    contributor authorKuang-Tsung Chang
    contributor authorLouis Ge
    date accessioned2017-05-08T22:09:05Z
    date available2017-05-08T22:09:05Z
    date copyrightJuly 2015
    date issued2015
    identifier other34521717.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/72383
    description abstractSoft clays are widely distributed in Missouri, United States. Due to their relatively low strength and high compressibility, subgrade construction in soft clays has encountered many difficulties. In recent practice, the use of fly ash (FA) along with lime to tackle soft subgrade problems has shown promising results. The effectiveness of Class C FA and lime kiln dust (LKD) in clay subgrade stabilization is examined in this research. Scanning electron microscopic (SEM) analysis, proctor compaction tests, unconfined compression tests, and resilient modulus tests were carried out on the FA and LKD modified soil mixtures. Test specimens were prepared at optimum water content and tested at various curing periods. The test specimens were reconstituted by static compression. Test results revealed that the addition of Class C FA could increase the dry unit weight of the FA treated soil, enhance the unconfined compressive strength, and improve the resilient modulus. Regression equations were developed to correlate the resilient modulus with curing time. The mechanism of FA stabilization was discussed based on the SEM results and the measurement of the electrical conductivity of the FA-soil-water system. Correlations between the unconfined compressive strength and resilient modulus were developed. It is concluded that subgrade stabilization with Class C FA and LKD are cost-effective for road-base construction.
    publisherAmerican Society of Civil Engineers
    titleChemically Stabilized Soft Clays for Road-Base Construction
    typeJournal Paper
    journal volume27
    journal issue7
    journal titleJournal of Materials in Civil Engineering
    identifier doi10.1061/(ASCE)MT.1943-5533.0001156
    treeJournal of Materials in Civil Engineering:;2015:;Volume ( 027 ):;issue: 007
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian