YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Construction Engineering and Management
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Construction Engineering and Management
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Hybrid Computational Model for Forecasting Taiwan Construction Cost Index

    Source: Journal of Construction Engineering and Management:;2015:;Volume ( 141 ):;issue: 004
    Author:
    Minh-Tu Cao
    ,
    Min-Yuan Cheng
    ,
    Yu-Wei Wu
    DOI: 10.1061/(ASCE)CO.1943-7862.0000948
    Publisher: American Society of Civil Engineers
    Abstract: The ability to accurately forecast future trends in the Construction Cost Index (CCI) is critical for construction cost managers to prepare accurate budgets for owners and prepare proper bids for contractors. However, CCI forecasting accuracy is affected by concurrent fluctuations in numerous factors (e.g., domestic/international economic conditions, economic indicators, and the price of energy). The main contribution of this study to the body of knowledge is the creation of a new procedure and a novel inference model, the self-adaptive structural radial basis neural network intelligence machine (SSRIM), to help cost engineers deal with the variability of CCI. In SSRIM, multivariate adaptive regression splines (MARS) analyzes the relative importance of various potential factors of influence on CCI, with those factors identified as significant assigned as input variables in the radial basis function neural network (RBFNN) and used to forecast CCI values. Meanwhile, the artificial bee colony (ABC) algorithm is employed to search for the optimal parameters of RBFNN to maximize the predictive accuracy of the model. A total of 122 Taiwan CCI data were used to build the proposed model, identifying SSRIM as the fittest CCI forecast model with attaining lowest values of RMSE and MAPE. It is expected that this work will contribute to the construction engineering and management global community by helping cost engineers and project managers prepare more accurate budget estimates, proper bids, and attain better-timed project execution to reduce construction costs during the operation process.
    • Download: (1.380Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Hybrid Computational Model for Forecasting Taiwan Construction Cost Index

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/72244
    Collections
    • Journal of Construction Engineering and Management

    Show full item record

    contributor authorMinh-Tu Cao
    contributor authorMin-Yuan Cheng
    contributor authorYu-Wei Wu
    date accessioned2017-05-08T22:08:43Z
    date available2017-05-08T22:08:43Z
    date copyrightApril 2015
    date issued2015
    identifier other33037618.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/72244
    description abstractThe ability to accurately forecast future trends in the Construction Cost Index (CCI) is critical for construction cost managers to prepare accurate budgets for owners and prepare proper bids for contractors. However, CCI forecasting accuracy is affected by concurrent fluctuations in numerous factors (e.g., domestic/international economic conditions, economic indicators, and the price of energy). The main contribution of this study to the body of knowledge is the creation of a new procedure and a novel inference model, the self-adaptive structural radial basis neural network intelligence machine (SSRIM), to help cost engineers deal with the variability of CCI. In SSRIM, multivariate adaptive regression splines (MARS) analyzes the relative importance of various potential factors of influence on CCI, with those factors identified as significant assigned as input variables in the radial basis function neural network (RBFNN) and used to forecast CCI values. Meanwhile, the artificial bee colony (ABC) algorithm is employed to search for the optimal parameters of RBFNN to maximize the predictive accuracy of the model. A total of 122 Taiwan CCI data were used to build the proposed model, identifying SSRIM as the fittest CCI forecast model with attaining lowest values of RMSE and MAPE. It is expected that this work will contribute to the construction engineering and management global community by helping cost engineers and project managers prepare more accurate budget estimates, proper bids, and attain better-timed project execution to reduce construction costs during the operation process.
    publisherAmerican Society of Civil Engineers
    titleHybrid Computational Model for Forecasting Taiwan Construction Cost Index
    typeJournal Paper
    journal volume141
    journal issue4
    journal titleJournal of Construction Engineering and Management
    identifier doi10.1061/(ASCE)CO.1943-7862.0000948
    treeJournal of Construction Engineering and Management:;2015:;Volume ( 141 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian