YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Performance-Based Seismic Design of Controlled Rocking Steel Braced Frames. II: Design of Capacity-Protected Elements

    Source: Journal of Structural Engineering:;2015:;Volume ( 141 ):;issue: 009
    Author:
    Lydell Wiebe
    ,
    Constantin Christopoulos
    DOI: 10.1061/(ASCE)ST.1943-541X.0001201
    Publisher: American Society of Civil Engineers
    Abstract: Controlled rocking steel braced frames (CRSBFs) are intended to have a self-centering response that avoids damage to main structural elements. To ensure that all nonlinearity is confined to the intended elements at the rocking joint, the frame must be adequately capacity designed. This requires accurate predictions of the peak forces that are likely to develop in all members of the frame while the rocking mechanism reaches its peak rotation. Previous studies have shown that the peak forces in CRSBF members are likely to be strongly influenced by higher mode effects, but these effects can be mitigated by designing multiple nonlinear mechanisms. This paper proposes methods for estimating the peak forces in frame elements, designing an additional mechanism if it is desired to mitigate higher mode effects, and predicting the reduction in response that will be achieved by adding this mechanism. The methods are validated by designing buildings with two, six, and 12 stories, including three alternative designs that use multiple mechanisms to mitigate the higher mode effects. The six frames are modeled using OpenSees and are subjected to 44 ground motions at the maximum considered earthquake level. The peak forces in the taller frames without additional mechanisms are dominated by higher mode effects, but these effects can be estimated using the proposed method. These forces can also be reduced by designing multiple mechanisms, and the proposed method provides a reasonable design-level prediction of this force reduction.
    • Download: (850.5Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Performance-Based Seismic Design of Controlled Rocking Steel Braced Frames. II: Design of Capacity-Protected Elements

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/72188
    Collections
    • Journal of Structural Engineering

    Show full item record

    contributor authorLydell Wiebe
    contributor authorConstantin Christopoulos
    date accessioned2017-05-08T22:08:33Z
    date available2017-05-08T22:08:33Z
    date copyrightSeptember 2015
    date issued2015
    identifier other32592273.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/72188
    description abstractControlled rocking steel braced frames (CRSBFs) are intended to have a self-centering response that avoids damage to main structural elements. To ensure that all nonlinearity is confined to the intended elements at the rocking joint, the frame must be adequately capacity designed. This requires accurate predictions of the peak forces that are likely to develop in all members of the frame while the rocking mechanism reaches its peak rotation. Previous studies have shown that the peak forces in CRSBF members are likely to be strongly influenced by higher mode effects, but these effects can be mitigated by designing multiple nonlinear mechanisms. This paper proposes methods for estimating the peak forces in frame elements, designing an additional mechanism if it is desired to mitigate higher mode effects, and predicting the reduction in response that will be achieved by adding this mechanism. The methods are validated by designing buildings with two, six, and 12 stories, including three alternative designs that use multiple mechanisms to mitigate the higher mode effects. The six frames are modeled using OpenSees and are subjected to 44 ground motions at the maximum considered earthquake level. The peak forces in the taller frames without additional mechanisms are dominated by higher mode effects, but these effects can be estimated using the proposed method. These forces can also be reduced by designing multiple mechanisms, and the proposed method provides a reasonable design-level prediction of this force reduction.
    publisherAmerican Society of Civil Engineers
    titlePerformance-Based Seismic Design of Controlled Rocking Steel Braced Frames. II: Design of Capacity-Protected Elements
    typeJournal Paper
    journal volume141
    journal issue9
    journal titleJournal of Structural Engineering
    identifier doi10.1061/(ASCE)ST.1943-541X.0001201
    treeJournal of Structural Engineering:;2015:;Volume ( 141 ):;issue: 009
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian