YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Hydrologic Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Hydrologic Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Parallel Inverse Modeling and Uncertainty Quantification for Computationally Demanding Groundwater-Flow Models Using Covariance Matrix Adaptation

    Source: Journal of Hydrologic Engineering:;2015:;Volume ( 020 ):;issue: 008
    Author:
    Ahmed S. Elshall
    ,
    Hai V. Pham
    ,
    Frank T.-C. Tsai
    ,
    Le Yan
    ,
    Ming Ye
    DOI: 10.1061/(ASCE)HE.1943-5584.0001126
    Publisher: American Society of Civil Engineers
    Abstract: This study investigates the performance of the covariance matrix adaptation-evolution strategy (CMA-ES), a stochastic optimization method, in solving groundwater inverse problems. The objectives of the study are to evaluate the computational efficiency of the parallel CMA-ES and to investigate the use of the empirically estimated covariance matrix in quantifying model prediction uncertainty due to parameter estimation uncertainty. First, the parallel scaling with increasing number of processors up to a certain limit is discussed for synthetic and real-world groundwater inverse problems. Second, through the use of the empirically estimated covariance matrix of parameters from the CMA-ES, the study adopts the Monte Carlo simulation technique to quantify model prediction uncertainty. The study shows that the parallel CMA-ES is an efficient and powerful method for solving the groundwater inverse problem for computationally demanding groundwater flow models and for deriving covariances of estimated parameters for uncertainty analysis.
    • Download: (12.28Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Parallel Inverse Modeling and Uncertainty Quantification for Computationally Demanding Groundwater-Flow Models Using Covariance Matrix Adaptation

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/72179
    Collections
    • Journal of Hydrologic Engineering

    Show full item record

    contributor authorAhmed S. Elshall
    contributor authorHai V. Pham
    contributor authorFrank T.-C. Tsai
    contributor authorLe Yan
    contributor authorMing Ye
    date accessioned2017-05-08T22:08:32Z
    date available2017-05-08T22:08:32Z
    date copyrightAugust 2015
    date issued2015
    identifier other32530190.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/72179
    description abstractThis study investigates the performance of the covariance matrix adaptation-evolution strategy (CMA-ES), a stochastic optimization method, in solving groundwater inverse problems. The objectives of the study are to evaluate the computational efficiency of the parallel CMA-ES and to investigate the use of the empirically estimated covariance matrix in quantifying model prediction uncertainty due to parameter estimation uncertainty. First, the parallel scaling with increasing number of processors up to a certain limit is discussed for synthetic and real-world groundwater inverse problems. Second, through the use of the empirically estimated covariance matrix of parameters from the CMA-ES, the study adopts the Monte Carlo simulation technique to quantify model prediction uncertainty. The study shows that the parallel CMA-ES is an efficient and powerful method for solving the groundwater inverse problem for computationally demanding groundwater flow models and for deriving covariances of estimated parameters for uncertainty analysis.
    publisherAmerican Society of Civil Engineers
    titleParallel Inverse Modeling and Uncertainty Quantification for Computationally Demanding Groundwater-Flow Models Using Covariance Matrix Adaptation
    typeJournal Paper
    journal volume20
    journal issue8
    journal titleJournal of Hydrologic Engineering
    identifier doi10.1061/(ASCE)HE.1943-5584.0001126
    treeJournal of Hydrologic Engineering:;2015:;Volume ( 020 ):;issue: 008
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian