YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Cold Regions Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Cold Regions Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Combined Thermal-Hydraulic-Mechanical Frost Heave Model Based on Takashi’s Equation

    Source: Journal of Cold Regions Engineering:;2015:;Volume ( 029 ):;issue: 004
    Author:
    Hao Zheng
    ,
    Shunji Kanie
    DOI: 10.1061/(ASCE)CR.1943-5495.0000089
    Publisher: American Society of Civil Engineers
    Abstract: The purpose of this study is to establish a numerical simulation model that addresses the combined thermal-hydraulic-mechanical process of frost heave. Of the several practical frost heave estimation theories, the authors adopt Takashi’s equation, which has been successfully applied to one-dimensional frost heave estimation. In this paper, Takashi’s equation is used to assess the frost heave ratio during freezing. Takashi’s equation is expanded for a two-dimensional evaluation by introducing an anisotropic parameter to distribute the frost heave ratio in different directions. This model couples Fourier’s law for heat transfer and Darcy’s law for unfrozen water flow. Latent heat is seriously evaluated by equivalent heat capacity method. For the thermal and hydraulic processes, this model considers temperature- and pressure-dependent hydraulic conductivity by an empirical equation. Both saturated and unsaturated conditions are addressed in this model. A finite-element method is adopted, and the time domain solution employed is the widely accepted Crank–Nicolson method. Specifically, it is assumed that the pore water pressure head and water content at freezing are zero. In this situation, it is not necessary to consider the hydraulic condition during the freezing process because it is accepted that Takashi’s equation can deal with the hydraulic process of freezing. Future complex and detailed models will require a more complete understanding and formulation of the processes in freezing zone; however, this is outside the scope of this paper. Finally, in order to demonstrate the applicability of this model, simple examples and simulations are provided.
    • Download: (813.4Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Combined Thermal-Hydraulic-Mechanical Frost Heave Model Based on Takashi’s Equation

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/72134
    Collections
    • Journal of Cold Regions Engineering

    Show full item record

    contributor authorHao Zheng
    contributor authorShunji Kanie
    date accessioned2017-05-08T22:08:24Z
    date available2017-05-08T22:08:24Z
    date copyrightDecember 2015
    date issued2015
    identifier other32286118.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/72134
    description abstractThe purpose of this study is to establish a numerical simulation model that addresses the combined thermal-hydraulic-mechanical process of frost heave. Of the several practical frost heave estimation theories, the authors adopt Takashi’s equation, which has been successfully applied to one-dimensional frost heave estimation. In this paper, Takashi’s equation is used to assess the frost heave ratio during freezing. Takashi’s equation is expanded for a two-dimensional evaluation by introducing an anisotropic parameter to distribute the frost heave ratio in different directions. This model couples Fourier’s law for heat transfer and Darcy’s law for unfrozen water flow. Latent heat is seriously evaluated by equivalent heat capacity method. For the thermal and hydraulic processes, this model considers temperature- and pressure-dependent hydraulic conductivity by an empirical equation. Both saturated and unsaturated conditions are addressed in this model. A finite-element method is adopted, and the time domain solution employed is the widely accepted Crank–Nicolson method. Specifically, it is assumed that the pore water pressure head and water content at freezing are zero. In this situation, it is not necessary to consider the hydraulic condition during the freezing process because it is accepted that Takashi’s equation can deal with the hydraulic process of freezing. Future complex and detailed models will require a more complete understanding and formulation of the processes in freezing zone; however, this is outside the scope of this paper. Finally, in order to demonstrate the applicability of this model, simple examples and simulations are provided.
    publisherAmerican Society of Civil Engineers
    titleCombined Thermal-Hydraulic-Mechanical Frost Heave Model Based on Takashi’s Equation
    typeJournal Paper
    journal volume29
    journal issue4
    journal titleJournal of Cold Regions Engineering
    identifier doi10.1061/(ASCE)CR.1943-5495.0000089
    treeJournal of Cold Regions Engineering:;2015:;Volume ( 029 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian