YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Engineering Mechanics
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Engineering Mechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Collapse Analysis of Ring-Stiffened Cylinders Using Ring Elements

    Source: Journal of Engineering Mechanics:;1997:;Volume ( 123 ):;issue: 004
    Author:
    Srinivasan Sridharan
    DOI: 10.1061/(ASCE)0733-9399(1997)123:4(367)
    Publisher: American Society of Civil Engineers
    Abstract: Asymptotic and fully nonlinear analyses are used to find the maximum load carrying capacity of ring-stiffened cylinders subjected to hydrostatic pressure. Both procedures use ring elements with harmonic description of displacements in the circumferential direction, and p-version shape functions in the other direction (longitudinal for shell and radial for stiffener). In the asymptotic procedure, the harmonics are uncoupled in the solution process, whereas they are coupled in the fully nonlinear analysis. In the latter analysis, a special iterative scheme that uncouples the harmonics in the solution of the iterative/incremental linear equations is employed. In general, the discrepancies between the two procedures increase with the level of imperfections and the thinness of the shell. The prebuckling nonlinearities that are not accounted for in the asymptotic procedure are identified as the major source of discrepancy. Sensitivity to imperfections in the shape of buckling modes given by the linear and nonlinear bifurcation analysis is also studied for comparison.
    • Download: (1.433Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Collapse Analysis of Ring-Stiffened Cylinders Using Ring Elements

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/72025
    Collections
    • Journal of Engineering Mechanics

    Show full item record

    contributor authorSrinivasan Sridharan
    date accessioned2017-05-08T22:08:05Z
    date available2017-05-08T22:08:05Z
    date copyrightApril 1997
    date issued1997
    identifier other31512584.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/72025
    description abstractAsymptotic and fully nonlinear analyses are used to find the maximum load carrying capacity of ring-stiffened cylinders subjected to hydrostatic pressure. Both procedures use ring elements with harmonic description of displacements in the circumferential direction, and p-version shape functions in the other direction (longitudinal for shell and radial for stiffener). In the asymptotic procedure, the harmonics are uncoupled in the solution process, whereas they are coupled in the fully nonlinear analysis. In the latter analysis, a special iterative scheme that uncouples the harmonics in the solution of the iterative/incremental linear equations is employed. In general, the discrepancies between the two procedures increase with the level of imperfections and the thinness of the shell. The prebuckling nonlinearities that are not accounted for in the asymptotic procedure are identified as the major source of discrepancy. Sensitivity to imperfections in the shape of buckling modes given by the linear and nonlinear bifurcation analysis is also studied for comparison.
    publisherAmerican Society of Civil Engineers
    titleCollapse Analysis of Ring-Stiffened Cylinders Using Ring Elements
    typeJournal Paper
    journal volume123
    journal issue4
    journal titleJournal of Engineering Mechanics
    identifier doi10.1061/(ASCE)0733-9399(1997)123:4(367)
    treeJournal of Engineering Mechanics:;1997:;Volume ( 123 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian