YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Energy Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Energy Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Thermo-Economic Analysis of Waste Heat Recovery ORC Using Zeotropic Mixtures

    Source: Journal of Energy Engineering:;2015:;Volume ( 141 ):;issue: 004
    Author:
    Saili Li
    ,
    Yiping Dai
    DOI: 10.1061/(ASCE)EY.1943-7897.0000245
    Publisher: American Society of Civil Engineers
    Abstract: Organic Rankine cycle (ORC) has been examined as an effective way to recovery waste heat from industrial manufacture. The effects of internal heat exchanger (IHE) and superheat degree on the thermoeconomic performance of ORC are presented in this paper. Zeotropic mixtures are employed in the simulation and six indicators are used to evaluate the system performance, as follows: (1) net power output, (2) thermal efficiency, (3) exergy efficiency, (4) cost per net power output (CPNPO), (5) area of the heat changers per net power output (APNPO), and (6) energy saving and emission reduction performance (ESERP). The results indicate that the more volatile pure component has a higher increasing rate of net power output when IHE is equipped. The IHE has a greater impact on thermal efficiency and exergy efficiency of the ORC with zeotropic mixtures than that of the ORC with pure fluid. For the ORC with both mixtures and pure component, the rising superheat degree results to the decline of the net power output but increase of the thermal efficiency, and exergy efficiency at the constant turbine inlet pressure. Both the basic ORC and regenerative ORC with zeotropic mixtures have a better economic performance than that with pure fluid. In addition, superheat degree has a negative effect on the economic performance of ORC with more volatile component mixtures.
    • Download: (9.384Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Thermo-Economic Analysis of Waste Heat Recovery ORC Using Zeotropic Mixtures

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/71983
    Collections
    • Journal of Energy Engineering

    Show full item record

    contributor authorSaili Li
    contributor authorYiping Dai
    date accessioned2017-05-08T22:08:00Z
    date available2017-05-08T22:08:00Z
    date copyrightDecember 2015
    date issued2015
    identifier other30927675.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/71983
    description abstractOrganic Rankine cycle (ORC) has been examined as an effective way to recovery waste heat from industrial manufacture. The effects of internal heat exchanger (IHE) and superheat degree on the thermoeconomic performance of ORC are presented in this paper. Zeotropic mixtures are employed in the simulation and six indicators are used to evaluate the system performance, as follows: (1) net power output, (2) thermal efficiency, (3) exergy efficiency, (4) cost per net power output (CPNPO), (5) area of the heat changers per net power output (APNPO), and (6) energy saving and emission reduction performance (ESERP). The results indicate that the more volatile pure component has a higher increasing rate of net power output when IHE is equipped. The IHE has a greater impact on thermal efficiency and exergy efficiency of the ORC with zeotropic mixtures than that of the ORC with pure fluid. For the ORC with both mixtures and pure component, the rising superheat degree results to the decline of the net power output but increase of the thermal efficiency, and exergy efficiency at the constant turbine inlet pressure. Both the basic ORC and regenerative ORC with zeotropic mixtures have a better economic performance than that with pure fluid. In addition, superheat degree has a negative effect on the economic performance of ORC with more volatile component mixtures.
    publisherAmerican Society of Civil Engineers
    titleThermo-Economic Analysis of Waste Heat Recovery ORC Using Zeotropic Mixtures
    typeJournal Paper
    journal volume141
    journal issue4
    journal titleJournal of Energy Engineering
    identifier doi10.1061/(ASCE)EY.1943-7897.0000245
    treeJournal of Energy Engineering:;2015:;Volume ( 141 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian