YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Hydraulic Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Hydraulic Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Three-Dimensional Numerical Modeling of Dam-Break Flows with Sediment Transport over Movable Beds

    Source: Journal of Hydraulic Engineering:;2015:;Volume ( 141 ):;issue: 001
    Author:
    Reza Marsooli
    ,
    Weiming Wu
    DOI: 10.1061/(ASCE)HY.1943-7900.0000947
    Publisher: American Society of Civil Engineers
    Abstract: A three-dimensional (3D) numerical model has been developed to simulate dam-break flows with sediment transport over movable beds. The hydrodynamic model solves the 3D Reynolds-averaged Navier-Stokes equations using a finite-volume method on collocated hexahedral meshes. The volume-of-fluid (VOF) technique with the compressive interface capturing scheme for arbitrary meshes is used to track the water surface boundary. The sediment transport model solves the nonequilibrium transport equations of suspended load and bed load separately, and in turn calculates the resulting bed change. A moving mesh technique is adopted to track the time evolution of bed topography. The grid moving velocity and computational cell volume change due to the moving mesh are taken into consideration when the hydrodynamic and sediment transport equations are discretized. The developed model has been tested using several experimental dam-break flows over movable beds. The calculated temporal and spatial variations of water and bed surfaces are in generally good agreement with the measured data. The effects of 3D features of the flow on morphological changes are discussed by comparing the results of the present model with results calculated by one-dimensional (1D) and two-dimensional (2D) models documented in the literature. The comparisons reveal that the present 3D model improves the accuracy of calculated morphological changes at the initial stages of dam-break flow, near the wave front, and around in-stream structures.
    • Download: (2.479Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Three-Dimensional Numerical Modeling of Dam-Break Flows with Sediment Transport over Movable Beds

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/71856
    Collections
    • Journal of Hydraulic Engineering

    Show full item record

    contributor authorReza Marsooli
    contributor authorWeiming Wu
    date accessioned2017-05-08T22:07:37Z
    date available2017-05-08T22:07:37Z
    date copyrightJanuary 2015
    date issued2015
    identifier other30069116.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/71856
    description abstractA three-dimensional (3D) numerical model has been developed to simulate dam-break flows with sediment transport over movable beds. The hydrodynamic model solves the 3D Reynolds-averaged Navier-Stokes equations using a finite-volume method on collocated hexahedral meshes. The volume-of-fluid (VOF) technique with the compressive interface capturing scheme for arbitrary meshes is used to track the water surface boundary. The sediment transport model solves the nonequilibrium transport equations of suspended load and bed load separately, and in turn calculates the resulting bed change. A moving mesh technique is adopted to track the time evolution of bed topography. The grid moving velocity and computational cell volume change due to the moving mesh are taken into consideration when the hydrodynamic and sediment transport equations are discretized. The developed model has been tested using several experimental dam-break flows over movable beds. The calculated temporal and spatial variations of water and bed surfaces are in generally good agreement with the measured data. The effects of 3D features of the flow on morphological changes are discussed by comparing the results of the present model with results calculated by one-dimensional (1D) and two-dimensional (2D) models documented in the literature. The comparisons reveal that the present 3D model improves the accuracy of calculated morphological changes at the initial stages of dam-break flow, near the wave front, and around in-stream structures.
    publisherAmerican Society of Civil Engineers
    titleThree-Dimensional Numerical Modeling of Dam-Break Flows with Sediment Transport over Movable Beds
    typeJournal Paper
    journal volume141
    journal issue1
    journal titleJournal of Hydraulic Engineering
    identifier doi10.1061/(ASCE)HY.1943-7900.0000947
    treeJournal of Hydraulic Engineering:;2015:;Volume ( 141 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian