YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Computing in Civil Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Computing in Civil Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Predicting Equilibrium Scour Depth at Bridge Piers Using Evolutionary Radial Basis Function Neural Network

    Source: Journal of Computing in Civil Engineering:;2015:;Volume ( 029 ):;issue: 005
    Author:
    Min-Yuan Cheng
    ,
    Minh-Tu Cao
    ,
    Yu-Wei Wu
    DOI: 10.1061/(ASCE)CP.1943-5487.0000380
    Publisher: American Society of Civil Engineers
    Abstract: Scouring of bridge piers is a major cause of bridge failure worldwide. Thus, designing safe depths for new bridge foundations and assessing/monitoring the safety of existing bridge foundations are critical to reducing the risk of bridge collapse and the subsequent potential losses in terms of life and property. This paper develops and tests the evolutionary radial basis function neural network (ERBFNN) as a model to forecast scour depth at bridge piers. The ERBFNN is an artificial intelligence (AI) inference model that integrates the radial basis function neural network (RBFNN) and the artificial bee colony (ABC). In the ERBFNN, the RBFNN handles the learning and fitting curves and ABC uses optimization to search for the optimal hidden neuron number
    • Download: (1.000Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Predicting Equilibrium Scour Depth at Bridge Piers Using Evolutionary Radial Basis Function Neural Network

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/71618
    Collections
    • Journal of Computing in Civil Engineering

    Show full item record

    contributor authorMin-Yuan Cheng
    contributor authorMinh-Tu Cao
    contributor authorYu-Wei Wu
    date accessioned2017-05-08T22:06:51Z
    date available2017-05-08T22:06:51Z
    date copyrightSeptember 2015
    date issued2015
    identifier other28979120.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/71618
    description abstractScouring of bridge piers is a major cause of bridge failure worldwide. Thus, designing safe depths for new bridge foundations and assessing/monitoring the safety of existing bridge foundations are critical to reducing the risk of bridge collapse and the subsequent potential losses in terms of life and property. This paper develops and tests the evolutionary radial basis function neural network (ERBFNN) as a model to forecast scour depth at bridge piers. The ERBFNN is an artificial intelligence (AI) inference model that integrates the radial basis function neural network (RBFNN) and the artificial bee colony (ABC). In the ERBFNN, the RBFNN handles the learning and fitting curves and ABC uses optimization to search for the optimal hidden neuron number
    publisherAmerican Society of Civil Engineers
    titlePredicting Equilibrium Scour Depth at Bridge Piers Using Evolutionary Radial Basis Function Neural Network
    typeJournal Paper
    journal volume29
    journal issue5
    journal titleJournal of Computing in Civil Engineering
    identifier doi10.1061/(ASCE)CP.1943-5487.0000380
    treeJournal of Computing in Civil Engineering:;2015:;Volume ( 029 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian