YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Composites for Construction
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Composites for Construction
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Torsional Moment Capacity and Failure Mode Mechanisms of Concrete Beams Reinforced with Carbon FRP Bars and Stirrups

    Source: Journal of Composites for Construction:;2015:;Volume ( 019 ):;issue: 002
    Author:
    Hamdy M. Mohamed
    ,
    Omar Chaallal
    ,
    Brahim Benmokrane
    DOI: 10.1061/(ASCE)CC.1943-5614.0000515
    Publisher: American Society of Civil Engineers
    Abstract: Fiber-reinforced-polymer (FRP) bars and stirrups have emerged as internal flexural and shear reinforcement for reinforced-concrete (RC) members in different applications. Nonetheless, the torsional behavior of FRP RC members has not yet been defined. This paper presents the results of an investigation of the torsional strength and behavior of full-scale concrete beams reinforced with carbon-FRP (CFRP) bars and stirrups. The beams measured 4,000 mm long, 250 mm wide, and 600 mm deep and were tested under pure torsion loading. The test specimens included four beams reinforced with CFRP bars and stirrups and one control beam reinforced with conventional steel reinforcement. The test variables were the type of reinforcement and CFRP stirrup spacing. The test results indicated that the CFRP RC beam exhibited similar strength, cracking behavior, and post-peak torsional stiffness compared with the counterpart steel RC beam. The hollow-tube, space-truss analogy with the 45° inclination of diagonal compressive stresses was in good agreement with the observed diagonal torsion failure. In addition, the paper examines the validity of the new design provisions in CAN/CSA S806-12 in predicting the nominal torsional strength of CFRP RC beams.
    • Download: (29.33Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Torsional Moment Capacity and Failure Mode Mechanisms of Concrete Beams Reinforced with Carbon FRP Bars and Stirrups

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/71606
    Collections
    • Journal of Composites for Construction

    Show full item record

    contributor authorHamdy M. Mohamed
    contributor authorOmar Chaallal
    contributor authorBrahim Benmokrane
    date accessioned2017-05-08T22:06:48Z
    date available2017-05-08T22:06:48Z
    date copyrightApril 2015
    date issued2015
    identifier other28910342.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/71606
    description abstractFiber-reinforced-polymer (FRP) bars and stirrups have emerged as internal flexural and shear reinforcement for reinforced-concrete (RC) members in different applications. Nonetheless, the torsional behavior of FRP RC members has not yet been defined. This paper presents the results of an investigation of the torsional strength and behavior of full-scale concrete beams reinforced with carbon-FRP (CFRP) bars and stirrups. The beams measured 4,000 mm long, 250 mm wide, and 600 mm deep and were tested under pure torsion loading. The test specimens included four beams reinforced with CFRP bars and stirrups and one control beam reinforced with conventional steel reinforcement. The test variables were the type of reinforcement and CFRP stirrup spacing. The test results indicated that the CFRP RC beam exhibited similar strength, cracking behavior, and post-peak torsional stiffness compared with the counterpart steel RC beam. The hollow-tube, space-truss analogy with the 45° inclination of diagonal compressive stresses was in good agreement with the observed diagonal torsion failure. In addition, the paper examines the validity of the new design provisions in CAN/CSA S806-12 in predicting the nominal torsional strength of CFRP RC beams.
    publisherAmerican Society of Civil Engineers
    titleTorsional Moment Capacity and Failure Mode Mechanisms of Concrete Beams Reinforced with Carbon FRP Bars and Stirrups
    typeJournal Paper
    journal volume19
    journal issue2
    journal titleJournal of Composites for Construction
    identifier doi10.1061/(ASCE)CC.1943-5614.0000515
    treeJournal of Composites for Construction:;2015:;Volume ( 019 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian