YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    System Decoupling Approach for 3-DOF Bridge Flutter Analysis

    Source: Journal of Structural Engineering:;2015:;Volume ( 141 ):;issue: 007
    Author:
    F. Y. Xu
    DOI: 10.1061/(ASCE)ST.1943-541X.0001129
    Publisher: American Society of Civil Engineers
    Abstract: A novel system decoupling approach (SDA) that enables three degree-of-freedom (3-DOF) bridge flutter analysis is proposed in this study to simultaneously investigate the relationships between modal parameters and 18 flutter derivatives. Based on the incentive-feedback mechanisms, the aerodynamic coupled system is conveniently decoupled in an iterative solution. Based on the SDA, it is unnecessary to simultaneously calculate all multiple frequencies for determining modal parameters and eventually quantifying critical flutter wind velocity. The efficacy and accuracy of the SDA is verified using a numerical example of thin flat plate. The coupling effects among three DOFs and influence of 18 flutter derivatives on flutter performance are quantified using the newly proposed method. The flutter mechanisms of thin flat plate and bluff deck section of the Akashi Kaikyo Suspension Bridge are numerically examined, and both difference and common grounds for two typical flutter phenomena are summarized. The results by the SDA show good agreement with those by the commonly used complex eigen-value analysis (CEVA). For the Akashi Kaikyo Bridge with bluff deck section, the analytical results of 2-DOF coupled flutter are coincident with the 3-DOF case and the experimental observations. This study provides significant insights into the flutter characteristics of 3-DOF bridges and explores the roles played by various parameters in modifying bridge deck aerodynamics and the evolution of modal coupling with increasing wind velocity. The simplified formulation that only concerns
    • Download: (524.6Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      System Decoupling Approach for 3-DOF Bridge Flutter Analysis

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/71591
    Collections
    • Journal of Structural Engineering

    Show full item record

    contributor authorF. Y. Xu
    date accessioned2017-05-08T22:06:45Z
    date available2017-05-08T22:06:45Z
    date copyrightJuly 2015
    date issued2015
    identifier other28782481.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/71591
    description abstractA novel system decoupling approach (SDA) that enables three degree-of-freedom (3-DOF) bridge flutter analysis is proposed in this study to simultaneously investigate the relationships between modal parameters and 18 flutter derivatives. Based on the incentive-feedback mechanisms, the aerodynamic coupled system is conveniently decoupled in an iterative solution. Based on the SDA, it is unnecessary to simultaneously calculate all multiple frequencies for determining modal parameters and eventually quantifying critical flutter wind velocity. The efficacy and accuracy of the SDA is verified using a numerical example of thin flat plate. The coupling effects among three DOFs and influence of 18 flutter derivatives on flutter performance are quantified using the newly proposed method. The flutter mechanisms of thin flat plate and bluff deck section of the Akashi Kaikyo Suspension Bridge are numerically examined, and both difference and common grounds for two typical flutter phenomena are summarized. The results by the SDA show good agreement with those by the commonly used complex eigen-value analysis (CEVA). For the Akashi Kaikyo Bridge with bluff deck section, the analytical results of 2-DOF coupled flutter are coincident with the 3-DOF case and the experimental observations. This study provides significant insights into the flutter characteristics of 3-DOF bridges and explores the roles played by various parameters in modifying bridge deck aerodynamics and the evolution of modal coupling with increasing wind velocity. The simplified formulation that only concerns
    publisherAmerican Society of Civil Engineers
    titleSystem Decoupling Approach for 3-DOF Bridge Flutter Analysis
    typeJournal Paper
    journal volume141
    journal issue7
    journal titleJournal of Structural Engineering
    identifier doi10.1061/(ASCE)ST.1943-541X.0001129
    treeJournal of Structural Engineering:;2015:;Volume ( 141 ):;issue: 007
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian