YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Rational Approach to Prediction of Shear Capacity of RC Beam-Column Elements

    Source: Journal of Structural Engineering:;2015:;Volume ( 141 ):;issue: 002
    Author:
    Paola Rita Marcantonio
    ,
    Joško Ožbolt
    ,
    Marco Petrangeli
    DOI: 10.1061/(ASCE)ST.1943-541X.0001037
    Publisher: American Society of Civil Engineers
    Abstract: This paper presents a new predictive formula for the shear capacity evaluation of reinforced concrete members subjected to combined axial, bending, and shear forces. The formula is based on a tensorial approach to concrete shear resistance that is very similar to the one used in the shear-enhanced fiber beam element. The total shear resistance is broken down into the contribution of concrete and contribution of shear reinforcement. The concrete contribution to the shear resistance is calculated using a normal-shear stress failure envelope. Normal (longitudinal) stresses are calculated from axial and bending forces acting on the concrete member. In the formulation, a number of simplifications are made to keep the formula as simple as possible but still sufficiently accurate. The resulting formulation, although capable of accounting for all of the major variables that influence the shear strength, including size effect, remains particularly simple and with a compact notation. The predictions of the proposed formula are compared with those used by the American Concrete Institute (ACI), the European Committee for Standardization (CEN) Eurocode, and the International Federation for Structural Concrete (fib) model code, and its accuracy is checked against a vast experimental database available in the literature. Results and comparisons are very encouraging and confirm the soundness of the underlying mechanical model. The capability of this model to provide a unified approach for reinforced and unreinforced members opens up the possibility to extend the application of the proposed formula to engineered cementitious composites, such as fiber-reinforced concrete.
    • Download: (3.903Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Rational Approach to Prediction of Shear Capacity of RC Beam-Column Elements

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/71471
    Collections
    • Journal of Structural Engineering

    Show full item record

    contributor authorPaola Rita Marcantonio
    contributor authorJoško Ožbolt
    contributor authorMarco Petrangeli
    date accessioned2017-05-08T22:06:24Z
    date available2017-05-08T22:06:24Z
    date copyrightFebruary 2015
    date issued2015
    identifier other28239353.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/71471
    description abstractThis paper presents a new predictive formula for the shear capacity evaluation of reinforced concrete members subjected to combined axial, bending, and shear forces. The formula is based on a tensorial approach to concrete shear resistance that is very similar to the one used in the shear-enhanced fiber beam element. The total shear resistance is broken down into the contribution of concrete and contribution of shear reinforcement. The concrete contribution to the shear resistance is calculated using a normal-shear stress failure envelope. Normal (longitudinal) stresses are calculated from axial and bending forces acting on the concrete member. In the formulation, a number of simplifications are made to keep the formula as simple as possible but still sufficiently accurate. The resulting formulation, although capable of accounting for all of the major variables that influence the shear strength, including size effect, remains particularly simple and with a compact notation. The predictions of the proposed formula are compared with those used by the American Concrete Institute (ACI), the European Committee for Standardization (CEN) Eurocode, and the International Federation for Structural Concrete (fib) model code, and its accuracy is checked against a vast experimental database available in the literature. Results and comparisons are very encouraging and confirm the soundness of the underlying mechanical model. The capability of this model to provide a unified approach for reinforced and unreinforced members opens up the possibility to extend the application of the proposed formula to engineered cementitious composites, such as fiber-reinforced concrete.
    publisherAmerican Society of Civil Engineers
    titleRational Approach to Prediction of Shear Capacity of RC Beam-Column Elements
    typeJournal Paper
    journal volume141
    journal issue2
    journal titleJournal of Structural Engineering
    identifier doi10.1061/(ASCE)ST.1943-541X.0001037
    treeJournal of Structural Engineering:;2015:;Volume ( 141 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian