YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Large-Scale Seismic Testing of a Hybrid Sliding-Rocking Posttensioned Segmental Bridge System

    Source: Journal of Structural Engineering:;2014:;Volume ( 140 ):;issue: 006
    Author:
    Petros Sideris
    ,
    Amjad J. Aref
    ,
    Andre Filiatrault
    DOI: 10.1061/(ASCE)ST.1943-541X.0000961
    Publisher: American Society of Civil Engineers
    Abstract: In this paper, a novel precast concrete segmental bridge system is introduced and experimentally investigated. The system consists of segmental members incorporating hybrid sliding-rocking (HSR) joints and internal unbonded posttensioning (PT). The HSR joints are plane interfaces that are oriented normal to the member axis and do not include shear keys or epoxy adhesives. The HSR joints are designed to exhibit sliding (slip-dominant, SD) or rocking (rocking-dominant, RD) to mitigate the applied seismic loading and reduce damage. The joint response is affected by the PT system, which can include straight or curved tendons. Two types of HSR members are developed and investigated: (1) members with SD joints and straight tendons, intended for substructure columns (HSR-SD columns), and (2) members with RD joints and curved tendons, intended for superstructure girders (HSR-RD girders). The SD joints are shown to offer energy dissipation with low damage through sliding in addition to moderate self-centering. The RD joints, albeit offering low energy dissipation, are shown to provide high self-centering. A series of shake table tests on a large-scale bridge specimen demonstrates the successful integrated response of the HSR-SD substructure and the HSR-RD superstructure for intense horizontal and vertical seismic excitations.
    • Download: (3.413Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Large-Scale Seismic Testing of a Hybrid Sliding-Rocking Posttensioned Segmental Bridge System

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/71383
    Collections
    • Journal of Structural Engineering

    Show full item record

    contributor authorPetros Sideris
    contributor authorAmjad J. Aref
    contributor authorAndre Filiatrault
    date accessioned2017-05-08T22:06:09Z
    date available2017-05-08T22:06:09Z
    date copyrightJune 2014
    date issued2014
    identifier other28104838.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/71383
    description abstractIn this paper, a novel precast concrete segmental bridge system is introduced and experimentally investigated. The system consists of segmental members incorporating hybrid sliding-rocking (HSR) joints and internal unbonded posttensioning (PT). The HSR joints are plane interfaces that are oriented normal to the member axis and do not include shear keys or epoxy adhesives. The HSR joints are designed to exhibit sliding (slip-dominant, SD) or rocking (rocking-dominant, RD) to mitigate the applied seismic loading and reduce damage. The joint response is affected by the PT system, which can include straight or curved tendons. Two types of HSR members are developed and investigated: (1) members with SD joints and straight tendons, intended for substructure columns (HSR-SD columns), and (2) members with RD joints and curved tendons, intended for superstructure girders (HSR-RD girders). The SD joints are shown to offer energy dissipation with low damage through sliding in addition to moderate self-centering. The RD joints, albeit offering low energy dissipation, are shown to provide high self-centering. A series of shake table tests on a large-scale bridge specimen demonstrates the successful integrated response of the HSR-SD substructure and the HSR-RD superstructure for intense horizontal and vertical seismic excitations.
    publisherAmerican Society of Civil Engineers
    titleLarge-Scale Seismic Testing of a Hybrid Sliding-Rocking Posttensioned Segmental Bridge System
    typeJournal Paper
    journal volume140
    journal issue6
    journal titleJournal of Structural Engineering
    identifier doi10.1061/(ASCE)ST.1943-541X.0000961
    treeJournal of Structural Engineering:;2014:;Volume ( 140 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian