YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Performance-Based Capacity Design of Steel Plate Shear Walls. I: Development Principles

    Source: Journal of Structural Engineering:;2014:;Volume ( 140 ):;issue: 012
    Author:
    Hassan Moghimi
    ,
    Robert G. Driver
    DOI: 10.1061/(ASCE)ST.1943-541X.0001023
    Publisher: American Society of Civil Engineers
    Abstract: This is Part I of two companion papers on performance-based capacity design of steel plate shear walls. Most previous research has been conducted with the primary aim of maximizing ductility and robustness under severe cyclic loading, without any explicit consideration of the costs of achieving this behavior. This has resulted in onerous capacity design rules in current codes and standards for achieving highly ductile systems, and has effectively discouraged their use in low and moderate seismic regions. These companion papers aim to provide a holistic and sound basis for capacity design to any of three explicit performance levels. In this paper, Part I, two target yield mechanisms associated with the two extreme performance levels (ductile and limited-ductility) are identified and justified, and the capacity design principles applicable to these performance levels are discussed. The limited-ductility mechanism departs from conventional treatment and is established based on finite element simulations and experimental observations. Two complementary new concepts for designing moderately ductile walls are also proposed and verified. Because design is an iterative process, modeling efficiencies for use with the performance-based approach are suggested and validated. Inconsistencies between current capacity design methods for evaluating the demands imposed by the infill plates on the boundary elements and the true infill plate behavior are identified and discussed.
    • Download: (3.213Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Performance-Based Capacity Design of Steel Plate Shear Walls. I: Development Principles

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/71365
    Collections
    • Journal of Structural Engineering

    Show full item record

    contributor authorHassan Moghimi
    contributor authorRobert G. Driver
    date accessioned2017-05-08T22:06:06Z
    date available2017-05-08T22:06:06Z
    date copyrightDecember 2014
    date issued2014
    identifier other27957490.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/71365
    description abstractThis is Part I of two companion papers on performance-based capacity design of steel plate shear walls. Most previous research has been conducted with the primary aim of maximizing ductility and robustness under severe cyclic loading, without any explicit consideration of the costs of achieving this behavior. This has resulted in onerous capacity design rules in current codes and standards for achieving highly ductile systems, and has effectively discouraged their use in low and moderate seismic regions. These companion papers aim to provide a holistic and sound basis for capacity design to any of three explicit performance levels. In this paper, Part I, two target yield mechanisms associated with the two extreme performance levels (ductile and limited-ductility) are identified and justified, and the capacity design principles applicable to these performance levels are discussed. The limited-ductility mechanism departs from conventional treatment and is established based on finite element simulations and experimental observations. Two complementary new concepts for designing moderately ductile walls are also proposed and verified. Because design is an iterative process, modeling efficiencies for use with the performance-based approach are suggested and validated. Inconsistencies between current capacity design methods for evaluating the demands imposed by the infill plates on the boundary elements and the true infill plate behavior are identified and discussed.
    publisherAmerican Society of Civil Engineers
    titlePerformance-Based Capacity Design of Steel Plate Shear Walls. I: Development Principles
    typeJournal Paper
    journal volume140
    journal issue12
    journal titleJournal of Structural Engineering
    identifier doi10.1061/(ASCE)ST.1943-541X.0001023
    treeJournal of Structural Engineering:;2014:;Volume ( 140 ):;issue: 012
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian