YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Waterway, Port, Coastal, and Ocean Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Waterway, Port, Coastal, and Ocean Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Influence of Finite-Length Seawalls for Tsunami Loading on Coastal Structures

    Source: Journal of Waterway, Port, Coastal, and Ocean Engineering:;2012:;Volume ( 138 ):;issue: 003
    Author:
    Seth Thomas
    ,
    Daniel Cox
    DOI: 10.1061/(ASCE)WW.1943-5460.0000125
    Publisher: American Society of Civil Engineers
    Abstract: This paper presents new experimental data and predictive equations for the reduction of the tsunami inundation force provided by finite-length seawalls. The hydraulic model experiments were conducted in a rectangular basin equipped with a large-stroke piston-type wavemaker to produce a transient pulse on the basis of an error function to best simulate the initial phases of tsunami inundation. The bathymetry had a mild slope constant in the cross-shore direction and was followed by a flat section raised above the mean water line. The tsunami force, pressure, and run-up were measured on an instrumented specimen located on the flat section, and a seawall was placed between the specimen and the shoreline. The incident wave conditions, seawall positions, and seawall heights were varied systematically to quantify the reduction of the maximum and average force relative to the baseline conditions without a seawall. Reduction factors ranged from 1.0 (no reduction) to 0.10 (90% reduction). Two empirical formulas were derived to predict the reduction factors for the maximum and average force using as input the incident (unbroken) tsunami height, the bore height at the seawall (in the absence of the wall), the seawall height, and the position of the seawall relative to the shoreline and design structure. The equations predicted the data for which they were calibrated with
    • Download: (6.529Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Influence of Finite-Length Seawalls for Tsunami Loading on Coastal Structures

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/70406
    Collections
    • Journal of Waterway, Port, Coastal, and Ocean Engineering

    Show full item record

    contributor authorSeth Thomas
    contributor authorDaniel Cox
    date accessioned2017-05-08T22:04:09Z
    date available2017-05-08T22:04:09Z
    date copyrightMay 2012
    date issued2012
    identifier other%28asce%29ww%2E1943-5460%2E0000171.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/70406
    description abstractThis paper presents new experimental data and predictive equations for the reduction of the tsunami inundation force provided by finite-length seawalls. The hydraulic model experiments were conducted in a rectangular basin equipped with a large-stroke piston-type wavemaker to produce a transient pulse on the basis of an error function to best simulate the initial phases of tsunami inundation. The bathymetry had a mild slope constant in the cross-shore direction and was followed by a flat section raised above the mean water line. The tsunami force, pressure, and run-up were measured on an instrumented specimen located on the flat section, and a seawall was placed between the specimen and the shoreline. The incident wave conditions, seawall positions, and seawall heights were varied systematically to quantify the reduction of the maximum and average force relative to the baseline conditions without a seawall. Reduction factors ranged from 1.0 (no reduction) to 0.10 (90% reduction). Two empirical formulas were derived to predict the reduction factors for the maximum and average force using as input the incident (unbroken) tsunami height, the bore height at the seawall (in the absence of the wall), the seawall height, and the position of the seawall relative to the shoreline and design structure. The equations predicted the data for which they were calibrated with
    publisherAmerican Society of Civil Engineers
    titleInfluence of Finite-Length Seawalls for Tsunami Loading on Coastal Structures
    typeJournal Paper
    journal volume138
    journal issue3
    journal titleJournal of Waterway, Port, Coastal, and Ocean Engineering
    identifier doi10.1061/(ASCE)WW.1943-5460.0000125
    treeJournal of Waterway, Port, Coastal, and Ocean Engineering:;2012:;Volume ( 138 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian