YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Water Resources Planning and Management
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Water Resources Planning and Management
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Dynamic Framework for Intelligent Control of River Flooding: Case Study

    Source: Journal of Water Resources Planning and Management:;2014:;Volume ( 140 ):;issue: 002
    Author:
    Arturo S. Leon
    ,
    Elizabeth A. Kanashiro
    ,
    Rachelle Valverde
    ,
    Venkataramana Sridhar
    DOI: 10.1061/(ASCE)WR.1943-5452.0000260
    Publisher: American Society of Civil Engineers
    Abstract: This paper presents a case study on the application of a dynamic framework for the intelligent control of flooding in the Boise River system in Idaho. This framework couples a robust and numerically efficient hydraulic routing approach with the popular multi-objective nondominated sorting genetic algorithm II (NSGA-II). The novelty of this framework is that it allows for controlled flooding when the conveyance capacity of the river system is exceeded or is about to exceed. Controlled flooding is based on weight factors assigned to each reach of the system, depending on the amount of damage that would occur, should a flood occur. For example, an urban setting would receive a higher weight factor than a rural or agricultural area. The weight factor for a reach does not need to be constant as it can be made a function of the flooding volume (or water stage) in the reach. The optimization algorithm minimizes flood damage by favoring low-weighted floodplain areas (e.g., rural areas) rather than high-weighted areas (e.g., urban areas) for the overbank flows. The proposed framework has the potential to improve water management and use of flood-prone areas in river systems, especially of those systems subjected to frequent flooding. This work is part of a long-term project that aims to develop a reservoir operation model that combines short-term objectives (e.g., flooding) and long-term objectives (e.g., hydropower, irrigation, water supply). The scope of this first paper is limited to the application of the proposed framework to flood control. Results for the Boise River system show a promising outcome in the application of this framework for flood control.
    • Download: (1.597Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Dynamic Framework for Intelligent Control of River Flooding: Case Study

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/70124
    Collections
    • Journal of Water Resources Planning and Management

    Show full item record

    contributor authorArturo S. Leon
    contributor authorElizabeth A. Kanashiro
    contributor authorRachelle Valverde
    contributor authorVenkataramana Sridhar
    date accessioned2017-05-08T22:03:30Z
    date available2017-05-08T22:03:30Z
    date copyrightFebruary 2014
    date issued2014
    identifier other%28asce%29wr%2E1943-5452%2E0000310.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/70124
    description abstractThis paper presents a case study on the application of a dynamic framework for the intelligent control of flooding in the Boise River system in Idaho. This framework couples a robust and numerically efficient hydraulic routing approach with the popular multi-objective nondominated sorting genetic algorithm II (NSGA-II). The novelty of this framework is that it allows for controlled flooding when the conveyance capacity of the river system is exceeded or is about to exceed. Controlled flooding is based on weight factors assigned to each reach of the system, depending on the amount of damage that would occur, should a flood occur. For example, an urban setting would receive a higher weight factor than a rural or agricultural area. The weight factor for a reach does not need to be constant as it can be made a function of the flooding volume (or water stage) in the reach. The optimization algorithm minimizes flood damage by favoring low-weighted floodplain areas (e.g., rural areas) rather than high-weighted areas (e.g., urban areas) for the overbank flows. The proposed framework has the potential to improve water management and use of flood-prone areas in river systems, especially of those systems subjected to frequent flooding. This work is part of a long-term project that aims to develop a reservoir operation model that combines short-term objectives (e.g., flooding) and long-term objectives (e.g., hydropower, irrigation, water supply). The scope of this first paper is limited to the application of the proposed framework to flood control. Results for the Boise River system show a promising outcome in the application of this framework for flood control.
    publisherAmerican Society of Civil Engineers
    titleDynamic Framework for Intelligent Control of River Flooding: Case Study
    typeJournal Paper
    journal volume140
    journal issue2
    journal titleJournal of Water Resources Planning and Management
    identifier doi10.1061/(ASCE)WR.1943-5452.0000260
    treeJournal of Water Resources Planning and Management:;2014:;Volume ( 140 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian