YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Water Resources Planning and Management
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Water Resources Planning and Management
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Water Management Decisions Using Multiple Hydrologic Models within the San Juan River Basin under Changing Climate Conditions

    Source: Journal of Water Resources Planning and Management:;2012:;Volume ( 138 ):;issue: 005
    Author:
    W. Paul Miller
    ,
    R. Alan Butler
    ,
    Thomas Piechota
    ,
    James Prairie
    ,
    Katrina Grantz
    ,
    Gina DeRosa
    DOI: 10.1061/(ASCE)WR.1943-5452.0000237
    Publisher: American Society of Civil Engineers
    Abstract: A modified version of the U.S. Bureau of Reclamation (Reclamation) long-term planning model, Colorado River Simulation System (CRSS), is used to evaluate whether hydrologic model choice has an impact on critical decision variables within the San Juan River Basin when evaluating potential effects of climate change through 2099. The distributed variable infiltration capacity (VIC) model and the lumped National Weather Service (NWS) River Forecast System (RFS) were each used to project future streamflow; these projections of streamflow were then used to force Reclamation’s CRSS model over the San Juan River Basin. Both hydrologic models were compared to evaluate whether or not uncertainty in climatic input generated from general circulation models outweighed differences between the hydrologic models. Differences in methodologies employed by each hydrologic model had a significant effect on projected streamflow within the basin. Both models project decreased water availability under changing climate conditions within the San Juan River Basin, but disagree on the magnitude of the decrease. On average, total naturalized inflow within the San Juan River Basin into the Navajo Reservoir is approximately 15% higher using inflows derived using the VIC model than those inflows developed using the RFS model; average projected tributary inflow from the San Juan River Basin to the Colorado River is approximately 25% higher using inflows derived by using the VIC model than those inflows developed by using the RFS. Overall, there is a higher risk and magnitude of shortage within the San Juan River Basin using streamflow developed with the RFS model as compared with inflow scenarios developed by using the VIC model. Model choice was found to have a significant effect on the evaluation of climate change impacts over the San Juan River Basin.
    • Download: (522.9Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Water Management Decisions Using Multiple Hydrologic Models within the San Juan River Basin under Changing Climate Conditions

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/70099
    Collections
    • Journal of Water Resources Planning and Management

    Show full item record

    contributor authorW. Paul Miller
    contributor authorR. Alan Butler
    contributor authorThomas Piechota
    contributor authorJames Prairie
    contributor authorKatrina Grantz
    contributor authorGina DeRosa
    date accessioned2017-05-08T22:03:28Z
    date available2017-05-08T22:03:28Z
    date copyrightSeptember 2012
    date issued2012
    identifier other%28asce%29wr%2E1943-5452%2E0000282.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/70099
    description abstractA modified version of the U.S. Bureau of Reclamation (Reclamation) long-term planning model, Colorado River Simulation System (CRSS), is used to evaluate whether hydrologic model choice has an impact on critical decision variables within the San Juan River Basin when evaluating potential effects of climate change through 2099. The distributed variable infiltration capacity (VIC) model and the lumped National Weather Service (NWS) River Forecast System (RFS) were each used to project future streamflow; these projections of streamflow were then used to force Reclamation’s CRSS model over the San Juan River Basin. Both hydrologic models were compared to evaluate whether or not uncertainty in climatic input generated from general circulation models outweighed differences between the hydrologic models. Differences in methodologies employed by each hydrologic model had a significant effect on projected streamflow within the basin. Both models project decreased water availability under changing climate conditions within the San Juan River Basin, but disagree on the magnitude of the decrease. On average, total naturalized inflow within the San Juan River Basin into the Navajo Reservoir is approximately 15% higher using inflows derived using the VIC model than those inflows developed using the RFS model; average projected tributary inflow from the San Juan River Basin to the Colorado River is approximately 25% higher using inflows derived by using the VIC model than those inflows developed by using the RFS. Overall, there is a higher risk and magnitude of shortage within the San Juan River Basin using streamflow developed with the RFS model as compared with inflow scenarios developed by using the VIC model. Model choice was found to have a significant effect on the evaluation of climate change impacts over the San Juan River Basin.
    publisherAmerican Society of Civil Engineers
    titleWater Management Decisions Using Multiple Hydrologic Models within the San Juan River Basin under Changing Climate Conditions
    typeJournal Paper
    journal volume138
    journal issue5
    journal titleJournal of Water Resources Planning and Management
    identifier doi10.1061/(ASCE)WR.1943-5452.0000237
    treeJournal of Water Resources Planning and Management:;2012:;Volume ( 138 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian