YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Water Resources Planning and Management
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Water Resources Planning and Management
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Reservoir Reoperation for Fish Ecosystem Restoration Using Daily Inflows—Case Study of Lake Shelbyville

    Source: Journal of Water Resources Planning and Management:;2011:;Volume ( 137 ):;issue: 006
    Author:
    Yi-Chen E. Yang
    ,
    Ximing Cai
    DOI: 10.1061/(ASCE)WR.1943-5452.0000139
    Publisher: American Society of Civil Engineers
    Abstract: Ecosystem restoration calls for reservoir reoperation. Traditionally, a minimum water release is set as a constraint for downstream ecosystem flow requirement. Recently, research has been conducted for the purpose of recovering natural flow regimes to a practical degree. This paper examines the practicality of adding an ecological objective to the operation of Lake Shelbyville, a reservoir situated on the Kaskaskia River in east central Illinois, which has been used primarily for flood control. A multiobjective optimization model that minimizes flood damage (the dominating priority in the historical operation) and maximizes fish diversity for the downstream ecosystem is developed for daily operation of the reservoir. The challenges addressed in this paper include handling daily reservoir release for the ecological assessment and evaluating the practicality of changing the existing operation rules for the purpose of including an ecological objective. The model results in the reduction of the maximum allowable water release to avoid extreme flooding events and an increase of the minimum water release. Thus, adding an ecological objective to Lake Shelbyville’s operation can improve downstream fish habitat without jeopardizing its original flood control objective. Furthermore, the effect of hydrologic variability on the results is explored with Monte Carlo simulations of reservoir inflows. The robustness analysis shows that the modified operation rules are sensitive to water levels; the biased representation of the role of water level in the reservoir release function can cause the bias of water release from its optimal value. Despite the limited data for the case study, this paper presents a method to improve conventional reservoir operation rules with consideration of both ecological and economic objectives.
    • Download: (2.026Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Reservoir Reoperation for Fish Ecosystem Restoration Using Daily Inflows—Case Study of Lake Shelbyville

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/69994
    Collections
    • Journal of Water Resources Planning and Management

    Show full item record

    contributor authorYi-Chen E. Yang
    contributor authorXiming Cai
    date accessioned2017-05-08T22:03:17Z
    date available2017-05-08T22:03:17Z
    date copyrightNovember 2011
    date issued2011
    identifier other%28asce%29wr%2E1943-5452%2E0000183.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/69994
    description abstractEcosystem restoration calls for reservoir reoperation. Traditionally, a minimum water release is set as a constraint for downstream ecosystem flow requirement. Recently, research has been conducted for the purpose of recovering natural flow regimes to a practical degree. This paper examines the practicality of adding an ecological objective to the operation of Lake Shelbyville, a reservoir situated on the Kaskaskia River in east central Illinois, which has been used primarily for flood control. A multiobjective optimization model that minimizes flood damage (the dominating priority in the historical operation) and maximizes fish diversity for the downstream ecosystem is developed for daily operation of the reservoir. The challenges addressed in this paper include handling daily reservoir release for the ecological assessment and evaluating the practicality of changing the existing operation rules for the purpose of including an ecological objective. The model results in the reduction of the maximum allowable water release to avoid extreme flooding events and an increase of the minimum water release. Thus, adding an ecological objective to Lake Shelbyville’s operation can improve downstream fish habitat without jeopardizing its original flood control objective. Furthermore, the effect of hydrologic variability on the results is explored with Monte Carlo simulations of reservoir inflows. The robustness analysis shows that the modified operation rules are sensitive to water levels; the biased representation of the role of water level in the reservoir release function can cause the bias of water release from its optimal value. Despite the limited data for the case study, this paper presents a method to improve conventional reservoir operation rules with consideration of both ecological and economic objectives.
    publisherAmerican Society of Civil Engineers
    titleReservoir Reoperation for Fish Ecosystem Restoration Using Daily Inflows—Case Study of Lake Shelbyville
    typeJournal Paper
    journal volume137
    journal issue6
    journal titleJournal of Water Resources Planning and Management
    identifier doi10.1061/(ASCE)WR.1943-5452.0000139
    treeJournal of Water Resources Planning and Management:;2011:;Volume ( 137 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian