YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Transportation Engineering, Part A: Systems
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Transportation Engineering, Part A: Systems
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Analytical Approach to Predict Temperature Profile in a Multilayered Pavement System Based on Measured Surface Temperature Data

    Source: Journal of Transportation Engineering, Part A: Systems:;2012:;Volume ( 138 ):;issue: 005
    Author:
    Dong Wang
    DOI: 10.1061/(ASCE)TE.1943-5436.0000362
    Publisher: American Society of Civil Engineers
    Abstract: This paper presents an algorithm to predict one-dimensional (1D) temperature profiles in a multilayered pavement system on the basis of measured surface temperature data. The model inputs are pavement layer thicknesses, thermal conductivity and diffusivity of layer materials, average initial pavement temperatures along pavement depths, and measured pavement surface temperature data. The main mathematical tools employed in deriving the analytical solution of pavement layer temperature predictions are the Laplace transform and numerical inverse Laplace transform. Measured in situ temperature data from a two-layer flexible pavement system demonstrate that the derived analytical solution generates reasonable temperature profiles in the asphalt concrete layer. The main advantages of the proposed algorithm are that it can rapidly predict the pavement temperature profile when the thermal conductivity and diffusivity values of the layer material are selected and the surface temperature data are measured at end points of each equally spaced time interval. Climatic data, such as air temperature, solar radiation intensity, and wind speed, are not needed to implement this algorithm. This algorithm can be applied to assist field engineers in estimating temperature profiles in a multilayered pavement system for the period during which falling weight deflectometer (FWD) tests are performed.
    • Download: (845.7Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Analytical Approach to Predict Temperature Profile in a Multilayered Pavement System Based on Measured Surface Temperature Data

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/69371
    Collections
    • Journal of Transportation Engineering, Part A: Systems

    Show full item record

    contributor authorDong Wang
    date accessioned2017-05-08T22:02:09Z
    date available2017-05-08T22:02:09Z
    date copyrightMay 2012
    date issued2012
    identifier other%28asce%29te%2E1943-5436%2E0000404.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/69371
    description abstractThis paper presents an algorithm to predict one-dimensional (1D) temperature profiles in a multilayered pavement system on the basis of measured surface temperature data. The model inputs are pavement layer thicknesses, thermal conductivity and diffusivity of layer materials, average initial pavement temperatures along pavement depths, and measured pavement surface temperature data. The main mathematical tools employed in deriving the analytical solution of pavement layer temperature predictions are the Laplace transform and numerical inverse Laplace transform. Measured in situ temperature data from a two-layer flexible pavement system demonstrate that the derived analytical solution generates reasonable temperature profiles in the asphalt concrete layer. The main advantages of the proposed algorithm are that it can rapidly predict the pavement temperature profile when the thermal conductivity and diffusivity values of the layer material are selected and the surface temperature data are measured at end points of each equally spaced time interval. Climatic data, such as air temperature, solar radiation intensity, and wind speed, are not needed to implement this algorithm. This algorithm can be applied to assist field engineers in estimating temperature profiles in a multilayered pavement system for the period during which falling weight deflectometer (FWD) tests are performed.
    publisherAmerican Society of Civil Engineers
    titleAnalytical Approach to Predict Temperature Profile in a Multilayered Pavement System Based on Measured Surface Temperature Data
    typeJournal Paper
    journal volume138
    journal issue5
    journal titleJournal of Transportation Engineering, Part A: Systems
    identifier doi10.1061/(ASCE)TE.1943-5436.0000362
    treeJournal of Transportation Engineering, Part A: Systems:;2012:;Volume ( 138 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian