YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Transportation Engineering, Part A: Systems
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Transportation Engineering, Part A: Systems
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Fuzzy Logic–Based Mapping Algorithm for Improving Animal-Vehicle Collision Data

    Source: Journal of Transportation Engineering, Part A: Systems:;2012:;Volume ( 138 ):;issue: 005
    Author:
    Yunteng Lao
    ,
    Yao-Jan Wu
    ,
    Yinhai Wang
    ,
    Kelly McAllister
    DOI: 10.1061/(ASCE)TE.1943-5436.0000351
    Publisher: American Society of Civil Engineers
    Abstract: Animal-vehicle collisions (AVCs) cause hundreds of human and wildlife animal fatalities and tens of thousands of human and wildlife animal injuries in North America. It is estimated that AVCs cause more than $1 billion in property damage each year in the United States. Further research efforts are needed to identify effective countermeasures against AVCs. Two types of data have been widely used in AVC-related research: collision reported (CRpt) data and carcass removal (CR) data. However, previous studies showed that these two data set are significantly different, implying the incompleteness in either set of the data. Hence, this study aims at developing an algorithm to combine these two types of data to improve the completeness of data for AVC studies. A fuzzy logic–based data mapping algorithm is proposed to identify matching data from the two data sets so that data are not overcounted when combining the two data sets. The membership functions of the fuzzy logic algorithm are determined by a survey of the Washington State Department of Transportation CR staff. As verified by expert judgment collected through another survey, the accuracy of this algorithm was approximately 90%. Applying this algorithm to the WSDOT data sets identified that approximately 25∼35% of the CRpt data records have matching pairs in the CR data. Compared with the original CR data set, the combined data set has 15∼22% more records. The proposed algorithm provides an effective means for merging the CRpt data and the CR data. Such a combined data set is more complete for wildlife safety studies and may provide additional insights into understanding the issue of AVCs.
    • Download: (413.9Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Fuzzy Logic–Based Mapping Algorithm for Improving Animal-Vehicle Collision Data

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/69359
    Collections
    • Journal of Transportation Engineering, Part A: Systems

    Show full item record

    contributor authorYunteng Lao
    contributor authorYao-Jan Wu
    contributor authorYinhai Wang
    contributor authorKelly McAllister
    date accessioned2017-05-08T22:02:05Z
    date available2017-05-08T22:02:05Z
    date copyrightMay 2012
    date issued2012
    identifier other%28asce%29te%2E1943-5436%2E0000393.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/69359
    description abstractAnimal-vehicle collisions (AVCs) cause hundreds of human and wildlife animal fatalities and tens of thousands of human and wildlife animal injuries in North America. It is estimated that AVCs cause more than $1 billion in property damage each year in the United States. Further research efforts are needed to identify effective countermeasures against AVCs. Two types of data have been widely used in AVC-related research: collision reported (CRpt) data and carcass removal (CR) data. However, previous studies showed that these two data set are significantly different, implying the incompleteness in either set of the data. Hence, this study aims at developing an algorithm to combine these two types of data to improve the completeness of data for AVC studies. A fuzzy logic–based data mapping algorithm is proposed to identify matching data from the two data sets so that data are not overcounted when combining the two data sets. The membership functions of the fuzzy logic algorithm are determined by a survey of the Washington State Department of Transportation CR staff. As verified by expert judgment collected through another survey, the accuracy of this algorithm was approximately 90%. Applying this algorithm to the WSDOT data sets identified that approximately 25∼35% of the CRpt data records have matching pairs in the CR data. Compared with the original CR data set, the combined data set has 15∼22% more records. The proposed algorithm provides an effective means for merging the CRpt data and the CR data. Such a combined data set is more complete for wildlife safety studies and may provide additional insights into understanding the issue of AVCs.
    publisherAmerican Society of Civil Engineers
    titleFuzzy Logic–Based Mapping Algorithm for Improving Animal-Vehicle Collision Data
    typeJournal Paper
    journal volume138
    journal issue5
    journal titleJournal of Transportation Engineering, Part A: Systems
    identifier doi10.1061/(ASCE)TE.1943-5436.0000351
    treeJournal of Transportation Engineering, Part A: Systems:;2012:;Volume ( 138 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian