YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Transportation Engineering, Part A: Systems
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Transportation Engineering, Part A: Systems
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Use of Digital Image Modeling for Evaluation of Concrete Pavement Macrotexture and Wear

    Source: Journal of Transportation Engineering, Part A: Systems:;2012:;Volume ( 138 ):;issue: 005
    Author:
    Saumya Amarasiri
    ,
    Manjriker Gunaratne
    ,
    Sudeep Sarkar
    DOI: 10.1061/(ASCE)TE.1943-5436.0000347
    Publisher: American Society of Civil Engineers
    Abstract: Modeling of the pavement image formation process by using reflection properties of macrotexture showed that digital images of concrete pavements can be used to monitor pavement wear. The specific optical characteristics of images and the optimum camera settings that can be used for this purpose were determined by theoretically formulating the Bidirectional Reflection Distribution Function (BRDF) of surface texture with uniform color. In the analytical phase of the study, desired levels of pavement texture were generated by combining a series of 3D sine surfaces of varying wavelengths and amplitudes. The optimum specular settings of the overhead point light source and the digital area-scan camera for effective highlighting of the imaged wheel path macrotexture were determined with an analytical formulation on the basis of a simplistic and physically meaningful BRDF model. It was also shown that the images obtained by the theoretical formulation closely resemble those captured from a similarly textured experimental surface under identical lighting and imaging conditions. In particular, the pavement image formation model revealed that quantifiable changes in the brightness of images do occur because of changes in texture depth and spacing (wavelength). In the next phase of the study, the traffic-induced pavement wearing process was simulated by gradual smoothening of the modeled surfaces, and then images corresponding to each wearing stage were generated. The theoretically predicted variation of the image brightness resulting from wear was experimentally verified by using images from a gradually worn-out concrete specimen. Finally, it was illustrated how the brightness evaluation of wheel path images has the potential to be a screening tool to monitor the degradation of macrotexture and, hence, the skid-resistance of pavements at the network-level.
    • Download: (901.9Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Use of Digital Image Modeling for Evaluation of Concrete Pavement Macrotexture and Wear

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/69356
    Collections
    • Journal of Transportation Engineering, Part A: Systems

    Show full item record

    contributor authorSaumya Amarasiri
    contributor authorManjriker Gunaratne
    contributor authorSudeep Sarkar
    date accessioned2017-05-08T22:02:04Z
    date available2017-05-08T22:02:04Z
    date copyrightMay 2012
    date issued2012
    identifier other%28asce%29te%2E1943-5436%2E0000390.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/69356
    description abstractModeling of the pavement image formation process by using reflection properties of macrotexture showed that digital images of concrete pavements can be used to monitor pavement wear. The specific optical characteristics of images and the optimum camera settings that can be used for this purpose were determined by theoretically formulating the Bidirectional Reflection Distribution Function (BRDF) of surface texture with uniform color. In the analytical phase of the study, desired levels of pavement texture were generated by combining a series of 3D sine surfaces of varying wavelengths and amplitudes. The optimum specular settings of the overhead point light source and the digital area-scan camera for effective highlighting of the imaged wheel path macrotexture were determined with an analytical formulation on the basis of a simplistic and physically meaningful BRDF model. It was also shown that the images obtained by the theoretical formulation closely resemble those captured from a similarly textured experimental surface under identical lighting and imaging conditions. In particular, the pavement image formation model revealed that quantifiable changes in the brightness of images do occur because of changes in texture depth and spacing (wavelength). In the next phase of the study, the traffic-induced pavement wearing process was simulated by gradual smoothening of the modeled surfaces, and then images corresponding to each wearing stage were generated. The theoretically predicted variation of the image brightness resulting from wear was experimentally verified by using images from a gradually worn-out concrete specimen. Finally, it was illustrated how the brightness evaluation of wheel path images has the potential to be a screening tool to monitor the degradation of macrotexture and, hence, the skid-resistance of pavements at the network-level.
    publisherAmerican Society of Civil Engineers
    titleUse of Digital Image Modeling for Evaluation of Concrete Pavement Macrotexture and Wear
    typeJournal Paper
    journal volume138
    journal issue5
    journal titleJournal of Transportation Engineering, Part A: Systems
    identifier doi10.1061/(ASCE)TE.1943-5436.0000347
    treeJournal of Transportation Engineering, Part A: Systems:;2012:;Volume ( 138 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian