YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Transportation Engineering, Part A: Systems
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Transportation Engineering, Part A: Systems
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Optimization of a Prestressed Concrete Railroad Crosstie for Heavy-Haul Applications

    Source: Journal of Transportation Engineering, Part A: Systems:;2011:;Volume ( 137 ):;issue: 011
    Author:
    Devin K. Harris
    ,
    Russell H. Lutch
    ,
    Theresa M. Ahlborn
    ,
    Pelle Duong
    DOI: 10.1061/(ASCE)TE.1943-5436.0000256
    Publisher: American Society of Civil Engineers
    Abstract: In response to rising energy costs, there is increased demand for efficient and sustainable transportation of people and goods. One source of such transportation is the railroad. To accommodate the increased demand, railroads are constructing new track and upgrading existing track. This update to the track system will increase its capacity and make it a more reliable means of transportation compared to other alternatives. In addition to increasing the track system capacity, railroads are considering an increase in the size of the typical freight rail car to allow larger tonnage. An increase in rail car loads will, in turn, require the design of track components to accommodate these loads. This design change is especially pertinent to crossties that support the rail and serve to transmit loads down to the substructure. Today, the use of concrete ties is on the rise in North America as they become an economical alternative, competitive with the historical wood ties used in industry, providing performance that surpasses its competition in terms of durability and capacity. Because of the increased loads heavy-haul railroads are considering applying to their tracks, current designs of prestressed concrete railroad ties for heavy-haul applications may be undersized. In an effort to maximize tie capacity while maintaining tie geometry, fastening systems, and installation equipment, a parametric study to optimize the existing designs was completed. The optimization focused on maximizing the capacity of an existing tie geometry through an investigation of prestressing quantity, configuration, stress levels, and other material properties. The results of the parametric optimization indicate that the capacity of an existing tie can be increased most efficiently by increasing the diameter of the prestressing and concrete strength. Findings of the study demonstrate that additional research is needed to evaluate the true capacity of concrete ties because of the impacts of deep beam effects and inadequate development length in the rail seat region.
    • Download: (283.7Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Optimization of a Prestressed Concrete Railroad Crosstie for Heavy-Haul Applications

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/69259
    Collections
    • Journal of Transportation Engineering, Part A: Systems

    Show full item record

    contributor authorDevin K. Harris
    contributor authorRussell H. Lutch
    contributor authorTheresa M. Ahlborn
    contributor authorPelle Duong
    date accessioned2017-05-08T22:01:54Z
    date available2017-05-08T22:01:54Z
    date copyrightNovember 2011
    date issued2011
    identifier other%28asce%29te%2E1943-5436%2E0000301.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/69259
    description abstractIn response to rising energy costs, there is increased demand for efficient and sustainable transportation of people and goods. One source of such transportation is the railroad. To accommodate the increased demand, railroads are constructing new track and upgrading existing track. This update to the track system will increase its capacity and make it a more reliable means of transportation compared to other alternatives. In addition to increasing the track system capacity, railroads are considering an increase in the size of the typical freight rail car to allow larger tonnage. An increase in rail car loads will, in turn, require the design of track components to accommodate these loads. This design change is especially pertinent to crossties that support the rail and serve to transmit loads down to the substructure. Today, the use of concrete ties is on the rise in North America as they become an economical alternative, competitive with the historical wood ties used in industry, providing performance that surpasses its competition in terms of durability and capacity. Because of the increased loads heavy-haul railroads are considering applying to their tracks, current designs of prestressed concrete railroad ties for heavy-haul applications may be undersized. In an effort to maximize tie capacity while maintaining tie geometry, fastening systems, and installation equipment, a parametric study to optimize the existing designs was completed. The optimization focused on maximizing the capacity of an existing tie geometry through an investigation of prestressing quantity, configuration, stress levels, and other material properties. The results of the parametric optimization indicate that the capacity of an existing tie can be increased most efficiently by increasing the diameter of the prestressing and concrete strength. Findings of the study demonstrate that additional research is needed to evaluate the true capacity of concrete ties because of the impacts of deep beam effects and inadequate development length in the rail seat region.
    publisherAmerican Society of Civil Engineers
    titleOptimization of a Prestressed Concrete Railroad Crosstie for Heavy-Haul Applications
    typeJournal Paper
    journal volume137
    journal issue11
    journal titleJournal of Transportation Engineering, Part A: Systems
    identifier doi10.1061/(ASCE)TE.1943-5436.0000256
    treeJournal of Transportation Engineering, Part A: Systems:;2011:;Volume ( 137 ):;issue: 011
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian