YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Transportation Engineering, Part A: Systems
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Transportation Engineering, Part A: Systems
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Vision-Based Roadway Geometry Computation

    Source: Journal of Transportation Engineering, Part A: Systems:;2010:;Volume ( 136 ):;issue: 003
    Author:
    Yichang (James) Tsai
    ,
    Zhaozheng Hu
    ,
    Zhaohua Wang
    DOI: 10.1061/(ASCE)TE.1943-5436.0000073
    Publisher: American Society of Civil Engineers
    Abstract: Geometric data in transportation, such as roadway geometry, are important for asset management and for safety analysis. Traditional roadway geometric data are measured in the field, which is time consuming, costly, and dangerous. This paper proposes an algorithm to compute roadway geometric data, including roadway length, lane width, line width, and pavement marking size, from images. This paper makes two major contributions. First, the paper proposes a generalized roadway geometry computation algorithm using emerging vision technology based on two-dimensional (2D)/three-dimensional (3D) image reconstruction. The proposed algorithm consists of four steps, which are camera calibration from vanishing points, roadway vanishing line computation, homography computation and 2D/3D reconstruction, and, finally, roadway geometry computation. Second, the paper develops an error model, called roadway geometry error model (RGEM), to spatially quantify and visualize computation errors so that decision makers can choose measurement locations with an acceptable error. The geometric interpretation to RGEM is also presented in terms of roadway vanishing line. The proposed algorithm has been tested using two sets of images that were collected from the Georgia Tech campus and from actual video log images provided by the Georgia Department of Transportation. The roadway geometry was computed and the computation errors were analyzed. The test results show that the computation errors increase when the computation locations approach the roadway vanishing line. For the computation location with a distance of 190 pixels to the roadway vanishing line, the pavement lane width computation error is less than 3 cm. The experimental results also demonstrate that the proposed error model, RGEM, is able to reliably evaluate the roadway geometry computation errors. Applications of the proposed algorithm for modern and intelligent transportation system are also discussed.
    • Download: (253.8Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Vision-Based Roadway Geometry Computation

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/69071
    Collections
    • Journal of Transportation Engineering, Part A: Systems

    Show full item record

    contributor authorYichang (James) Tsai
    contributor authorZhaozheng Hu
    contributor authorZhaohua Wang
    date accessioned2017-05-08T22:01:35Z
    date available2017-05-08T22:01:35Z
    date copyrightMarch 2010
    date issued2010
    identifier other%28asce%29te%2E1943-5436%2E0000121.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/69071
    description abstractGeometric data in transportation, such as roadway geometry, are important for asset management and for safety analysis. Traditional roadway geometric data are measured in the field, which is time consuming, costly, and dangerous. This paper proposes an algorithm to compute roadway geometric data, including roadway length, lane width, line width, and pavement marking size, from images. This paper makes two major contributions. First, the paper proposes a generalized roadway geometry computation algorithm using emerging vision technology based on two-dimensional (2D)/three-dimensional (3D) image reconstruction. The proposed algorithm consists of four steps, which are camera calibration from vanishing points, roadway vanishing line computation, homography computation and 2D/3D reconstruction, and, finally, roadway geometry computation. Second, the paper develops an error model, called roadway geometry error model (RGEM), to spatially quantify and visualize computation errors so that decision makers can choose measurement locations with an acceptable error. The geometric interpretation to RGEM is also presented in terms of roadway vanishing line. The proposed algorithm has been tested using two sets of images that were collected from the Georgia Tech campus and from actual video log images provided by the Georgia Department of Transportation. The roadway geometry was computed and the computation errors were analyzed. The test results show that the computation errors increase when the computation locations approach the roadway vanishing line. For the computation location with a distance of 190 pixels to the roadway vanishing line, the pavement lane width computation error is less than 3 cm. The experimental results also demonstrate that the proposed error model, RGEM, is able to reliably evaluate the roadway geometry computation errors. Applications of the proposed algorithm for modern and intelligent transportation system are also discussed.
    publisherAmerican Society of Civil Engineers
    titleVision-Based Roadway Geometry Computation
    typeJournal Paper
    journal volume136
    journal issue3
    journal titleJournal of Transportation Engineering, Part A: Systems
    identifier doi10.1061/(ASCE)TE.1943-5436.0000073
    treeJournal of Transportation Engineering, Part A: Systems:;2010:;Volume ( 136 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian