YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Surveying Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Surveying Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    New Fast Precise Kinematic Surveying Method Using a Single Dual-Frequency GPS Receiver

    Source: Journal of Surveying Engineering:;2013:;Volume ( 139 ):;issue: 001
    Author:
    Zhizhao
    ,
    Liu
    ,
    Shengyue
    ,
    Ji
    ,
    Wu
    ,
    Chen
    ,
    Xiaoli
    ,
    Ding
    DOI: 10.1061/(ASCE)SU.1943-5428.0000092
    Publisher: American Society of Civil Engineers
    Abstract: As of this writing, there are two popular methods to perform precise surveying using the single dual-frequency Global Positioning System (GPS) receiver. One is the Real-Time Kinematic (RTK) technique. The other is the Precise Point Positioning (PPP) technique. The RTK technique requires GPS surveyors to have at least one GPS base station while the PPP technique needs a long observation period to resolve the carrier-phase ambiguities. This paper proposes a new, fast method that can conduct precise kinematic surveying using a single dual-frequency GPS receiver, overcoming the aforementioned problems. This new method, Absolute Plus Loop-based Accumulated-solution Time-relative (APLAT), combines the GPS absolute-positioning method and a loop-based accumulated-solution time-relative positioning method. In this APLAT method, the kinematic surveying trajectory must form a loop. The coordinates of the start-point of the loop can be precisely determined using the absolute positioning function of APLAT by making two short sessions of static observations. This function is useful if no control-point is available in the kinematic surveying. The relative positions of other kinematic surveying points in the loop are determined using the function of loop-based accumulated-solution time-relative GPS positioning. The integration of the absolute and the relative positioning functions allows kinematic surveying to precisely determine the absolute coordinates of each surveyed point in the loop. To determine the absolute coordinates of the start-point of a loop, only two short sessions (5 min each in this study) of static GPS observations (prior to starting and after completing the loop surveying) are required. The results of extensive absolute-positioning tests show that 3D-positioning standard deviation about 7 cm and root-mean-square (RMS) error about 13.4 cm can be achieved when the loop-duration is in the range of 40–80 min. Too short or long a loop-duration may degrade the absolute-positioning accuracy. Results from various relative positioning tests using the loop-based accumulated-solution time-relative method indicate that relative-positioning RMS errors of 1.3 cm, 2.6 cm, and 8.8 cm can be obtained for loop durations of 20 min, 40 min, and 60 min, respectively. This new APLAT method offers a new, fast, and precise (RMS error of 12 cm for absolute and RMS error of 8.8-cm relative positioning for 60-min loop duration) kinematic surveying method that is able to meet many GPS surveying and mapping requirements. This is particularly useful for postmission data processing in circumstances where single-base-station RTK or network RTK service is not available. In this study, the final precise-orbit and precise-satellite-clock data from the International GNSS Service are used to mitigate these errors. At present, this method is useful just for postmission applications, but it offers the flexibility of using absolute-positioning or relative-positioning function only, depending upon the specific surveying and mapping conditions and requirements. This method is a good complement to the PPP and RTK precise-positioning techniques currently in use. Due to the increasing spatial decorrelation of error sources, the positioning accuracy may degrade as the maximum spatial distance (approximately between the loop start-point and the loop middle-point) increases.
    • Download: (1.062Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      New Fast Precise Kinematic Surveying Method Using a Single Dual-Frequency GPS Receiver

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/68972
    Collections
    • Journal of Surveying Engineering

    Show full item record

    contributor authorZhizhao
    contributor authorLiu
    contributor authorShengyue
    contributor authorJi
    contributor authorWu
    contributor authorChen
    contributor authorXiaoli
    contributor authorDing
    date accessioned2017-05-08T22:01:25Z
    date available2017-05-08T22:01:25Z
    date copyrightFebruary 2013
    date issued2013
    identifier other%28asce%29te%2E1943-5436%2E0000010.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/68972
    description abstractAs of this writing, there are two popular methods to perform precise surveying using the single dual-frequency Global Positioning System (GPS) receiver. One is the Real-Time Kinematic (RTK) technique. The other is the Precise Point Positioning (PPP) technique. The RTK technique requires GPS surveyors to have at least one GPS base station while the PPP technique needs a long observation period to resolve the carrier-phase ambiguities. This paper proposes a new, fast method that can conduct precise kinematic surveying using a single dual-frequency GPS receiver, overcoming the aforementioned problems. This new method, Absolute Plus Loop-based Accumulated-solution Time-relative (APLAT), combines the GPS absolute-positioning method and a loop-based accumulated-solution time-relative positioning method. In this APLAT method, the kinematic surveying trajectory must form a loop. The coordinates of the start-point of the loop can be precisely determined using the absolute positioning function of APLAT by making two short sessions of static observations. This function is useful if no control-point is available in the kinematic surveying. The relative positions of other kinematic surveying points in the loop are determined using the function of loop-based accumulated-solution time-relative GPS positioning. The integration of the absolute and the relative positioning functions allows kinematic surveying to precisely determine the absolute coordinates of each surveyed point in the loop. To determine the absolute coordinates of the start-point of a loop, only two short sessions (5 min each in this study) of static GPS observations (prior to starting and after completing the loop surveying) are required. The results of extensive absolute-positioning tests show that 3D-positioning standard deviation about 7 cm and root-mean-square (RMS) error about 13.4 cm can be achieved when the loop-duration is in the range of 40–80 min. Too short or long a loop-duration may degrade the absolute-positioning accuracy. Results from various relative positioning tests using the loop-based accumulated-solution time-relative method indicate that relative-positioning RMS errors of 1.3 cm, 2.6 cm, and 8.8 cm can be obtained for loop durations of 20 min, 40 min, and 60 min, respectively. This new APLAT method offers a new, fast, and precise (RMS error of 12 cm for absolute and RMS error of 8.8-cm relative positioning for 60-min loop duration) kinematic surveying method that is able to meet many GPS surveying and mapping requirements. This is particularly useful for postmission data processing in circumstances where single-base-station RTK or network RTK service is not available. In this study, the final precise-orbit and precise-satellite-clock data from the International GNSS Service are used to mitigate these errors. At present, this method is useful just for postmission applications, but it offers the flexibility of using absolute-positioning or relative-positioning function only, depending upon the specific surveying and mapping conditions and requirements. This method is a good complement to the PPP and RTK precise-positioning techniques currently in use. Due to the increasing spatial decorrelation of error sources, the positioning accuracy may degrade as the maximum spatial distance (approximately between the loop start-point and the loop middle-point) increases.
    publisherAmerican Society of Civil Engineers
    titleNew Fast Precise Kinematic Surveying Method Using a Single Dual-Frequency GPS Receiver
    typeJournal Paper
    journal volume139
    journal issue1
    journal titleJournal of Surveying Engineering
    identifier doi10.1061/(ASCE)SU.1943-5428.0000092
    treeJournal of Surveying Engineering:;2013:;Volume ( 139 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian