YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Surveying Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Surveying Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Weakly Multicollinear Datum Transformations

    Source: Journal of Surveying Engineering:;2012:;Volume ( 138 ):;issue: 004
    Author:
    Bahadır
    ,
    Aktuğ
    DOI: 10.1061/(ASCE)SU.1943-5428.0000086
    Publisher: American Society of Civil Engineers
    Abstract: Geodetic network design and optimization is a very well-known concept in geodesy. However, in many cases, the available geodetic network configuration with respect to the estimation model is insufficient because of the physical and financial limitations. For the case of estimating the datum transformation parameters between two datums, the colocated points are only an unevenly and inhomogenously distributed subset of the available national/regional networks. Because the transformation parameters are defined with respect to an earth-centered, earth-fixed (ECEF) frame, very limited geographic coverage of the national/regional networks often leads to a weakly multicollinear estimation problem. Such limited geographical coverage is often coupled with the intrinsic geometrical distortions as well as the relatively lower precision of the observations, in particular, when transforming a terrestrial network into a space-based network. In such cases, the individual parameters become highly correlated and oversensitive to the network configuration, and the individual transformation parameters cannot be estimated reliably. In this study, the concept of an idealized three-dimensional (3D) regional network geometry is introduced, its inverse cofactor matrix is analytically derived, and a regularized estimation method based on the inverse cofactor matrix of an ideal network distribution is presented to deal with the weakly multicollinear datum transformation problem. The efficiency of the proposed method is shown in three realistically simulated networks. The proposed method outperforms the standard least squares in terms of mean square error (MSE) and reduces the correlations among the parameters.
    • Download: (760.1Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Weakly Multicollinear Datum Transformations

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/68966
    Collections
    • Journal of Surveying Engineering

    Show full item record

    contributor authorBahadır
    contributor authorAktuğ
    date accessioned2017-05-08T22:01:24Z
    date available2017-05-08T22:01:24Z
    date copyrightNovember 2012
    date issued2012
    identifier other%28asce%29te%2E1943-5436%2E0000004.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/68966
    description abstractGeodetic network design and optimization is a very well-known concept in geodesy. However, in many cases, the available geodetic network configuration with respect to the estimation model is insufficient because of the physical and financial limitations. For the case of estimating the datum transformation parameters between two datums, the colocated points are only an unevenly and inhomogenously distributed subset of the available national/regional networks. Because the transformation parameters are defined with respect to an earth-centered, earth-fixed (ECEF) frame, very limited geographic coverage of the national/regional networks often leads to a weakly multicollinear estimation problem. Such limited geographical coverage is often coupled with the intrinsic geometrical distortions as well as the relatively lower precision of the observations, in particular, when transforming a terrestrial network into a space-based network. In such cases, the individual parameters become highly correlated and oversensitive to the network configuration, and the individual transformation parameters cannot be estimated reliably. In this study, the concept of an idealized three-dimensional (3D) regional network geometry is introduced, its inverse cofactor matrix is analytically derived, and a regularized estimation method based on the inverse cofactor matrix of an ideal network distribution is presented to deal with the weakly multicollinear datum transformation problem. The efficiency of the proposed method is shown in three realistically simulated networks. The proposed method outperforms the standard least squares in terms of mean square error (MSE) and reduces the correlations among the parameters.
    publisherAmerican Society of Civil Engineers
    titleWeakly Multicollinear Datum Transformations
    typeJournal Paper
    journal volume138
    journal issue4
    journal titleJournal of Surveying Engineering
    identifier doi10.1061/(ASCE)SU.1943-5428.0000086
    treeJournal of Surveying Engineering:;2012:;Volume ( 138 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian