YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Effect of Ground Motion Sequence on Response of Squat Reinforced Concrete Shear Walls

    Source: Journal of Structural Engineering:;2014:;Volume ( 140 ):;issue: 008
    Author:
    Catherine A. Whyte
    ,
    Bozidar Stojadinovic
    DOI: 10.1061/(ASCE)ST.1943-541X.0000912
    Publisher: American Society of Civil Engineers
    Abstract: Most industrial and nuclear facilities rely on reinforced concrete structural walls as their primary seismic lateral-force-resisting components. In nuclear facility structures, squat walls commonly have an aspect ratio lower than 0.5 and are designed to be thick for radiation shielding and blast and fire protection. The combination of a squat and thick wall geometry causes very high wall stiffness and strength. However, there is significant uncertainty about expected strengths, deformation capacities, and failure modes of these walls in earthquake load sequences, such as main-shock/aftershock combinations. Hybrid simulation is an effective experimental method to examine these issues: it enables simulation of the seismic response of squat and thick shear walls without the need to recreate the often very large mass associated with the remainder of the prototype structure. A hybrid simulation program utilized two shear wall specimens to investigate the variations of squat wall responses caused by different earthquake magnitude sequences. The results of these simulations indicated that different earthquake magnitude sequences do not have a significant effect on the force-deformation response and failure mode sequence of squat reinforced concrete shear walls.
    • Download: (1.679Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Effect of Ground Motion Sequence on Response of Squat Reinforced Concrete Shear Walls

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/68855
    Collections
    • Journal of Structural Engineering

    Show full item record

    contributor authorCatherine A. Whyte
    contributor authorBozidar Stojadinovic
    date accessioned2017-05-08T22:01:09Z
    date available2017-05-08T22:01:09Z
    date copyrightAugust 2014
    date issued2014
    identifier other%28asce%29su%2E1943-5428%2E0000022.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/68855
    description abstractMost industrial and nuclear facilities rely on reinforced concrete structural walls as their primary seismic lateral-force-resisting components. In nuclear facility structures, squat walls commonly have an aspect ratio lower than 0.5 and are designed to be thick for radiation shielding and blast and fire protection. The combination of a squat and thick wall geometry causes very high wall stiffness and strength. However, there is significant uncertainty about expected strengths, deformation capacities, and failure modes of these walls in earthquake load sequences, such as main-shock/aftershock combinations. Hybrid simulation is an effective experimental method to examine these issues: it enables simulation of the seismic response of squat and thick shear walls without the need to recreate the often very large mass associated with the remainder of the prototype structure. A hybrid simulation program utilized two shear wall specimens to investigate the variations of squat wall responses caused by different earthquake magnitude sequences. The results of these simulations indicated that different earthquake magnitude sequences do not have a significant effect on the force-deformation response and failure mode sequence of squat reinforced concrete shear walls.
    publisherAmerican Society of Civil Engineers
    titleEffect of Ground Motion Sequence on Response of Squat Reinforced Concrete Shear Walls
    typeJournal Paper
    journal volume140
    journal issue8
    journal titleJournal of Structural Engineering
    identifier doi10.1061/(ASCE)ST.1943-541X.0000912
    treeJournal of Structural Engineering:;2014:;Volume ( 140 ):;issue: 008
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian