YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Shear Behavior of Ultrahigh Performance Fiber-Reinforced Concrete Beams. II: Analysis and Design Provisions

    Source: Journal of Structural Engineering:;2014:;Volume ( 140 ):;issue: 005
    Author:
    Florent Baby
    ,
    Pierre Marchand
    ,
    François Toutlemonde
    DOI: 10.1061/(ASCE)ST.1943-541X.0000908
    Publisher: American Society of Civil Engineers
    Abstract: The safety margin of shear design provisions for ultrahigh performance fiber reinforced concrete (UHPFRC) requires quantification prior to widespread use. To this aim, the results of a dedicated experimental campaign described in a companion paper and available data from the literature have been used. Different models have been tested for predicting the shear-cracking strength and the ultimate shear capacity of UHPFRC beams. The lack of characterization of the tensile UHPFRC behavior often impairs the quality of data obtained from shear tests on UHPFRC beams. This issue has been partially overcome by approximating the UHPFRC postcracking strength under tension from fibers and matrix properties in using the variable engagement model. The safety of the French recommendations for UHPFRC has been confirmed, and improved models for serviceability-limit states prediction and realistic accounting of critical shear-cracking have been developed.
    • Download: (258.5Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Shear Behavior of Ultrahigh Performance Fiber-Reinforced Concrete Beams. II: Analysis and Design Provisions

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/68850
    Collections
    • Journal of Structural Engineering

    Show full item record

    contributor authorFlorent Baby
    contributor authorPierre Marchand
    contributor authorFrançois Toutlemonde
    date accessioned2017-05-08T22:01:09Z
    date available2017-05-08T22:01:09Z
    date copyrightMay 2014
    date issued2014
    identifier other%28asce%29su%2E1943-5428%2E0000018.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/68850
    description abstractThe safety margin of shear design provisions for ultrahigh performance fiber reinforced concrete (UHPFRC) requires quantification prior to widespread use. To this aim, the results of a dedicated experimental campaign described in a companion paper and available data from the literature have been used. Different models have been tested for predicting the shear-cracking strength and the ultimate shear capacity of UHPFRC beams. The lack of characterization of the tensile UHPFRC behavior often impairs the quality of data obtained from shear tests on UHPFRC beams. This issue has been partially overcome by approximating the UHPFRC postcracking strength under tension from fibers and matrix properties in using the variable engagement model. The safety of the French recommendations for UHPFRC has been confirmed, and improved models for serviceability-limit states prediction and realistic accounting of critical shear-cracking have been developed.
    publisherAmerican Society of Civil Engineers
    titleShear Behavior of Ultrahigh Performance Fiber-Reinforced Concrete Beams. II: Analysis and Design Provisions
    typeJournal Paper
    journal volume140
    journal issue5
    journal titleJournal of Structural Engineering
    identifier doi10.1061/(ASCE)ST.1943-541X.0000908
    treeJournal of Structural Engineering:;2014:;Volume ( 140 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian