YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Repair of Fire-Exposed Preloaded Rectangular Concrete Columns by Postcompressed Steel Plates

    Source: Journal of Structural Engineering:;2014:;Volume ( 140 ):;issue: 003
    Author:
    Lu Wang
    ,
    Ray Kai-Leung Su
    DOI: 10.1061/(ASCE)ST.1943-541X.0000884
    Publisher: American Society of Civil Engineers
    Abstract: This paper describes an experimental study of axially loaded, fire-exposed, rectangular RC columns repaired with postcompressed steel plates. Seven RC columns with identical section dimensions and reinforcement details were fabricated and tested. Six of these were exposed to a 4-h fire load according to the ISO 834 standard. After 1 month of cooling, five of the fire-exposed columns were installed with precambered steel plates, which were then postcompressed by a method newly developed by the authors. All columns were tested under axial compression to determine their ultimate load capacity, deformation, and ductility. The effects of steel-plate thickness, initial precamber displacements, and preloading level on the ultimate load capacity of repaired RC columns were investigated. The test results show that up to 72% of the original capacity of the axial load-carrying capacity of fire-exposed columns repaired with postcompressed steel plates can be restored. Furthermore, the repaired specimens show better ductility and postpeak deformability. An analytical model was adopted to predict the ultimate axial load capacity of fire-exposed columns repaired with postcompressed steel plates. The comparison of the theoretical and experimental results reveals that the analytical model can accurately predict the ultimate axial load capacity of the repaired columns.
    • Download: (4.052Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Repair of Fire-Exposed Preloaded Rectangular Concrete Columns by Postcompressed Steel Plates

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/68824
    Collections
    • Journal of Structural Engineering

    Show full item record

    contributor authorLu Wang
    contributor authorRay Kai-Leung Su
    date accessioned2017-05-08T22:01:07Z
    date available2017-05-08T22:01:07Z
    date copyrightMarch 2014
    date issued2014
    identifier other%28asce%29st%2E1943-541x%2E0000974.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/68824
    description abstractThis paper describes an experimental study of axially loaded, fire-exposed, rectangular RC columns repaired with postcompressed steel plates. Seven RC columns with identical section dimensions and reinforcement details were fabricated and tested. Six of these were exposed to a 4-h fire load according to the ISO 834 standard. After 1 month of cooling, five of the fire-exposed columns were installed with precambered steel plates, which were then postcompressed by a method newly developed by the authors. All columns were tested under axial compression to determine their ultimate load capacity, deformation, and ductility. The effects of steel-plate thickness, initial precamber displacements, and preloading level on the ultimate load capacity of repaired RC columns were investigated. The test results show that up to 72% of the original capacity of the axial load-carrying capacity of fire-exposed columns repaired with postcompressed steel plates can be restored. Furthermore, the repaired specimens show better ductility and postpeak deformability. An analytical model was adopted to predict the ultimate axial load capacity of fire-exposed columns repaired with postcompressed steel plates. The comparison of the theoretical and experimental results reveals that the analytical model can accurately predict the ultimate axial load capacity of the repaired columns.
    publisherAmerican Society of Civil Engineers
    titleRepair of Fire-Exposed Preloaded Rectangular Concrete Columns by Postcompressed Steel Plates
    typeJournal Paper
    journal volume140
    journal issue3
    journal titleJournal of Structural Engineering
    identifier doi10.1061/(ASCE)ST.1943-541X.0000884
    treeJournal of Structural Engineering:;2014:;Volume ( 140 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian