YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Repairing Distortion-Induced Fatigue Cracks in Steel Bridge Girders Using Angles-with-Plate Retrofit Technique. II: Computer Simulations

    Source: Journal of Structural Engineering:;2014:;Volume ( 140 ):;issue: 005
    Author:
    Fatih Alemdar
    ,
    Temple Overman
    ,
    Adolfo Matamoros
    ,
    Caroline Bennett
    ,
    Stan Rolfe
    DOI: 10.1061/(ASCE)ST.1943-541X.0000874
    Publisher: American Society of Civil Engineers
    Abstract: This paper presents the results from computer simulations of 914 mm (36 in.) deep girder-cross frame subassemblies to study the effects of distortion-induced fatigue and to evaluate the effectiveness of a newly proposed cost-effective retrofit measure. The proposed retrofit measure consists of adding steel angles connecting the girder web and the transverse connection plate (CP), and a steel plate on the back side of the girder web. The retrofit measure is intended to reduce stress demand at the welds, to restrain the web-gap region from deforming in the out-of-plane direction, and to distribute lateral forces transferred by cross-frames over a wider region of the web. Parametric studies were carried out to determine the optimal configuration to prevent growth of fatigue cracks of various lengths in the web-gap region. It was found that the proposed retrofit measure reduced peak stress demands with respect to the unretrofitted configuration by 50% or more, making it likely that it will prevent fatigue crack reinitiation. The parametric studies showed that the proposed retrofit measure became more effective in reducing the peak stress demand as the stiffness of the elements increased, with the lowest average stress demand occurring when the angles and backing plate were assigned thicknesses equal to 2.67 times the thickness of the web. Experimental verification of this study is presented in a companion paper.
    • Download: (2.336Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Repairing Distortion-Induced Fatigue Cracks in Steel Bridge Girders Using Angles-with-Plate Retrofit Technique. II: Computer Simulations

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/68814
    Collections
    • Journal of Structural Engineering

    Show full item record

    contributor authorFatih Alemdar
    contributor authorTemple Overman
    contributor authorAdolfo Matamoros
    contributor authorCaroline Bennett
    contributor authorStan Rolfe
    date accessioned2017-05-08T22:01:04Z
    date available2017-05-08T22:01:04Z
    date copyrightMay 2014
    date issued2014
    identifier other%28asce%29st%2E1943-541x%2E0000918.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/68814
    description abstractThis paper presents the results from computer simulations of 914 mm (36 in.) deep girder-cross frame subassemblies to study the effects of distortion-induced fatigue and to evaluate the effectiveness of a newly proposed cost-effective retrofit measure. The proposed retrofit measure consists of adding steel angles connecting the girder web and the transverse connection plate (CP), and a steel plate on the back side of the girder web. The retrofit measure is intended to reduce stress demand at the welds, to restrain the web-gap region from deforming in the out-of-plane direction, and to distribute lateral forces transferred by cross-frames over a wider region of the web. Parametric studies were carried out to determine the optimal configuration to prevent growth of fatigue cracks of various lengths in the web-gap region. It was found that the proposed retrofit measure reduced peak stress demands with respect to the unretrofitted configuration by 50% or more, making it likely that it will prevent fatigue crack reinitiation. The parametric studies showed that the proposed retrofit measure became more effective in reducing the peak stress demand as the stiffness of the elements increased, with the lowest average stress demand occurring when the angles and backing plate were assigned thicknesses equal to 2.67 times the thickness of the web. Experimental verification of this study is presented in a companion paper.
    publisherAmerican Society of Civil Engineers
    titleRepairing Distortion-Induced Fatigue Cracks in Steel Bridge Girders Using Angles-with-Plate Retrofit Technique. II: Computer Simulations
    typeJournal Paper
    journal volume140
    journal issue5
    journal titleJournal of Structural Engineering
    identifier doi10.1061/(ASCE)ST.1943-541X.0000874
    treeJournal of Structural Engineering:;2014:;Volume ( 140 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian