YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Finite-Element Model Updating and Probabilistic Analysis of Timber-Concrete Composite Beams

    Source: Journal of Structural Engineering:;2012:;Volume ( 138 ):;issue: 007
    Author:
    Alessandro Zona
    ,
    Michele Barbato
    ,
    Massimo Fragiacomo
    DOI: 10.1061/(ASCE)ST.1943-541X.0000509
    Publisher: American Society of Civil Engineers
    Abstract: Timber-concrete composite beams are an increasingly common design solution for medium-to-long span floors in new buildings. Thus, there is a significant need for accurate models and analysis tools to predict the response and performance of timber-concrete composite beams. In this paper, a nonlinear finite-element (FE) frame model with deformable shear connection is adopted to estimate the short-term structural response of timber-concrete composite beams for which experimental results are available. The FE model is used in conjunction with a probabilistic analysis methodology, which explicitly accounts for the uncertainties in the parameters that describe the constitutive models for timber, concrete, and shear connectors. The objectives of this study are (1) the evaluation of the variability of global and local structural response quantities owing to the uncertainties in the constitutive parameters of timber, concrete, and shear connectors; and (2) the analysis of the correlation between experimental measurements and numerical results based on FE models in which the values of the constitutive parameters are set equal to their experimentally identified mean values and in which the values of the constitutive parameters are optimized through FE model updating, respectively. The results presented in this study show that uncertainties in the constitutive parameters of timber, concrete, and shear connectors have a significant influence on the correlation between the experimental and numerical results. In addition, the optimal values of material parameters obtained using the FE model updating procedure may show substantial variations with respect to the parameters’ mean values as identified in the experimental testing. Prospective developments directed toward design applications and based on the obtained results are also discussed.
    • Download: (281.6Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Finite-Element Model Updating and Probabilistic Analysis of Timber-Concrete Composite Beams

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/68421
    Collections
    • Journal of Structural Engineering

    Show full item record

    contributor authorAlessandro Zona
    contributor authorMichele Barbato
    contributor authorMassimo Fragiacomo
    date accessioned2017-05-08T21:59:44Z
    date available2017-05-08T21:59:44Z
    date copyrightJuly 2012
    date issued2012
    identifier other%28asce%29st%2E1943-541x%2E0000550.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/68421
    description abstractTimber-concrete composite beams are an increasingly common design solution for medium-to-long span floors in new buildings. Thus, there is a significant need for accurate models and analysis tools to predict the response and performance of timber-concrete composite beams. In this paper, a nonlinear finite-element (FE) frame model with deformable shear connection is adopted to estimate the short-term structural response of timber-concrete composite beams for which experimental results are available. The FE model is used in conjunction with a probabilistic analysis methodology, which explicitly accounts for the uncertainties in the parameters that describe the constitutive models for timber, concrete, and shear connectors. The objectives of this study are (1) the evaluation of the variability of global and local structural response quantities owing to the uncertainties in the constitutive parameters of timber, concrete, and shear connectors; and (2) the analysis of the correlation between experimental measurements and numerical results based on FE models in which the values of the constitutive parameters are set equal to their experimentally identified mean values and in which the values of the constitutive parameters are optimized through FE model updating, respectively. The results presented in this study show that uncertainties in the constitutive parameters of timber, concrete, and shear connectors have a significant influence on the correlation between the experimental and numerical results. In addition, the optimal values of material parameters obtained using the FE model updating procedure may show substantial variations with respect to the parameters’ mean values as identified in the experimental testing. Prospective developments directed toward design applications and based on the obtained results are also discussed.
    publisherAmerican Society of Civil Engineers
    titleFinite-Element Model Updating and Probabilistic Analysis of Timber-Concrete Composite Beams
    typeJournal Paper
    journal volume138
    journal issue7
    journal titleJournal of Structural Engineering
    identifier doi10.1061/(ASCE)ST.1943-541X.0000509
    treeJournal of Structural Engineering:;2012:;Volume ( 138 ):;issue: 007
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian