YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Excessive Long-Time Deflections of Prestressed Box Girders. I: Record-Span Bridge in Palau and Other Paradigms

    Source: Journal of Structural Engineering:;2012:;Volume ( 138 ):;issue: 006
    Author:
    Zdeněk P. Bažant
    ,
    Qiang Yu
    ,
    Guang-Hua Li
    DOI: 10.1061/(ASCE)ST.1943-541X.0000487
    Publisher: American Society of Civil Engineers
    Abstract: The segmental prestressed concrete box girder of Koror-Babeldaob (KB) Bridge in Palau, which had a record span of 241 m (791 ft), presents a striking paradigm of serviceability loss because of excessive multidecade deflections. The data required for analysis have recently been released and are here exploited to show how the analysis and design could be improved. Erected segmentally in 1977, this girder developed a midspan deflection of 1.61 m (5.3 ft) compared with the design camber after 18 years, and it collapsed in 1996 as a consequence of remedial prestressing, after a 3-month delay. Compared with three-dimensional analysis, the traditional beam-type analysis of box girder deflections is found to have errors up to 20%, although greater errors are likely for bridges with higher box-width-to-span ratios than the KB Bridge. However, even three-dimensional finite-element analysis with step-by-step time integration cannot explain the observed deflections when the current American Concrete Institute, Japan Society of Civil Engineers, Comité Euro-International du Béton (or Comité Euro-International du Béton—Fédération internationale de la précontrainte), and Gardner and Lockman prediction models for creep and shrinkage are used. These models give 18-year deflection estimates that are 50–77% lower than measured and yield unrealistic shapes of the deflection history. They also predict the 18-year prestress loss to be 46–56% lower than the measured mean prestress loss, which was 50%. Model B3, which is the only theoretically based model, underestimates the 18-year deflection by 42% and gives a prestress loss of 40% when the default parameter values are used. However, in Model B3, several input parameters are adjustable and if they are adjusted according to the long-time laboratory tests of Brooks, a close fit of all the measurements is obtained. For early deflections and their extrapolation, it is important that Model B3 can capture realistically the differences in the rates of shrinkage and drying creep caused by the differences in the thickness of the walls of the cross section. The differences in temperature and possible cracking of the top slab also need to be taken into account. Other paradigms on which data have recently been released are four bridges in Japan and one in the Czech Republic. Their excessive deflections can also be explained. The detailed method of analysis and the lessons learned are presented in Part II.
    • Download: (3.458Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Excessive Long-Time Deflections of Prestressed Box Girders. I: Record-Span Bridge in Palau and Other Paradigms

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/68396
    Collections
    • Journal of Structural Engineering

    Show full item record

    contributor authorZdeněk P. Bažant
    contributor authorQiang Yu
    contributor authorGuang-Hua Li
    date accessioned2017-05-08T21:59:41Z
    date available2017-05-08T21:59:41Z
    date copyrightJune 2012
    date issued2012
    identifier other%28asce%29st%2E1943-541x%2E0000529.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/68396
    description abstractThe segmental prestressed concrete box girder of Koror-Babeldaob (KB) Bridge in Palau, which had a record span of 241 m (791 ft), presents a striking paradigm of serviceability loss because of excessive multidecade deflections. The data required for analysis have recently been released and are here exploited to show how the analysis and design could be improved. Erected segmentally in 1977, this girder developed a midspan deflection of 1.61 m (5.3 ft) compared with the design camber after 18 years, and it collapsed in 1996 as a consequence of remedial prestressing, after a 3-month delay. Compared with three-dimensional analysis, the traditional beam-type analysis of box girder deflections is found to have errors up to 20%, although greater errors are likely for bridges with higher box-width-to-span ratios than the KB Bridge. However, even three-dimensional finite-element analysis with step-by-step time integration cannot explain the observed deflections when the current American Concrete Institute, Japan Society of Civil Engineers, Comité Euro-International du Béton (or Comité Euro-International du Béton—Fédération internationale de la précontrainte), and Gardner and Lockman prediction models for creep and shrinkage are used. These models give 18-year deflection estimates that are 50–77% lower than measured and yield unrealistic shapes of the deflection history. They also predict the 18-year prestress loss to be 46–56% lower than the measured mean prestress loss, which was 50%. Model B3, which is the only theoretically based model, underestimates the 18-year deflection by 42% and gives a prestress loss of 40% when the default parameter values are used. However, in Model B3, several input parameters are adjustable and if they are adjusted according to the long-time laboratory tests of Brooks, a close fit of all the measurements is obtained. For early deflections and their extrapolation, it is important that Model B3 can capture realistically the differences in the rates of shrinkage and drying creep caused by the differences in the thickness of the walls of the cross section. The differences in temperature and possible cracking of the top slab also need to be taken into account. Other paradigms on which data have recently been released are four bridges in Japan and one in the Czech Republic. Their excessive deflections can also be explained. The detailed method of analysis and the lessons learned are presented in Part II.
    publisherAmerican Society of Civil Engineers
    titleExcessive Long-Time Deflections of Prestressed Box Girders. I: Record-Span Bridge in Palau and Other Paradigms
    typeJournal Paper
    journal volume138
    journal issue6
    journal titleJournal of Structural Engineering
    identifier doi10.1061/(ASCE)ST.1943-541X.0000487
    treeJournal of Structural Engineering:;2012:;Volume ( 138 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian