YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Inelastic Bending Capacity of Cold-Formed Steel Members

    Source: Journal of Structural Engineering:;2012:;Volume ( 138 ):;issue: 004
    Author:
    Yared Shifferaw
    ,
    B. W. Schafer
    DOI: 10.1061/(ASCE)ST.1943-541X.0000469
    Publisher: American Society of Civil Engineers
    Abstract: The objective of this paper is to provide and verify a general design method for prediction of inelastic bending capacity in cold-formed steel members potentially subject to local, distortional, and/or lateral-torsional buckling modes. An extensive experimental database of tested cold-formed steel beams is collected and indicates that inelastic reserve in the bending capacity of thin-walled cold-formed steel members is more common than typically assumed. Elementary mechanics for inelastic reserve are reviewed and simplified expressions provided for connecting the strain demand to the inelastic bending capacity in the range between the yield moment and the fully plastic moment. The strain capacity that can be sustained in inelastic local and inelastic distortional buckling is investigated through existing experiments coupled with nonlinear finite-element (FE) analysis. The nonlinear FE models provide a comprehensive means to investigate the relationship between cross-section slenderness, normalized strain capacity, and the resulting bending strength. A design approach for inelastic lateral-torsional buckling is provided on the basis of the hot-rolled steel AISC Specification. The resulting relationships for inelastic local, distortional, and lateral-torsional buckling are provided in a Direct Strength Method format for potential adoption in the cold-formed steel American Iron and Steel Institute (AISI) Specification. The provided design method is assessed against available data and shown to be a reliable predictor of inelastic bending capacity in cold-formed steel members.
    • Download: (4.268Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Inelastic Bending Capacity of Cold-Formed Steel Members

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/68379
    Collections
    • Journal of Structural Engineering

    Show full item record

    contributor authorYared Shifferaw
    contributor authorB. W. Schafer
    date accessioned2017-05-08T21:59:36Z
    date available2017-05-08T21:59:36Z
    date copyrightApril 2012
    date issued2012
    identifier other%28asce%29st%2E1943-541x%2E0000512.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/68379
    description abstractThe objective of this paper is to provide and verify a general design method for prediction of inelastic bending capacity in cold-formed steel members potentially subject to local, distortional, and/or lateral-torsional buckling modes. An extensive experimental database of tested cold-formed steel beams is collected and indicates that inelastic reserve in the bending capacity of thin-walled cold-formed steel members is more common than typically assumed. Elementary mechanics for inelastic reserve are reviewed and simplified expressions provided for connecting the strain demand to the inelastic bending capacity in the range between the yield moment and the fully plastic moment. The strain capacity that can be sustained in inelastic local and inelastic distortional buckling is investigated through existing experiments coupled with nonlinear finite-element (FE) analysis. The nonlinear FE models provide a comprehensive means to investigate the relationship between cross-section slenderness, normalized strain capacity, and the resulting bending strength. A design approach for inelastic lateral-torsional buckling is provided on the basis of the hot-rolled steel AISC Specification. The resulting relationships for inelastic local, distortional, and lateral-torsional buckling are provided in a Direct Strength Method format for potential adoption in the cold-formed steel American Iron and Steel Institute (AISI) Specification. The provided design method is assessed against available data and shown to be a reliable predictor of inelastic bending capacity in cold-formed steel members.
    publisherAmerican Society of Civil Engineers
    titleInelastic Bending Capacity of Cold-Formed Steel Members
    typeJournal Paper
    journal volume138
    journal issue4
    journal titleJournal of Structural Engineering
    identifier doi10.1061/(ASCE)ST.1943-541X.0000469
    treeJournal of Structural Engineering:;2012:;Volume ( 138 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian