YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Real-Time Hybrid Simulation Using Shake Tables and Dynamic Actuators

    Source: Journal of Structural Engineering:;2011:;Volume ( 137 ):;issue: 007
    Author:
    Xiaoyun Shao
    ,
    Andrei M. Reinhorn
    ,
    Mettupalayam V. Sivaselvan
    DOI: 10.1061/(ASCE)ST.1943-541X.0000314
    Publisher: American Society of Civil Engineers
    Abstract: The development and implementation of the real-time hybrid simulation (RTHS), a seismic response simulation method with a combination of numerical computation and physical specimens excited by shake tables and auxiliary actuators, are presented. The structure to be simulated is divided into one or more experimental and computational substructures. The loadings generated by the seismic excitations at the interfaces between the experimental and computational substructures, in terms of accelerations and forces, are imposed by shake tables and actuators in a step-by-step manner at a real-time rate. The measured displacement and velocity responses of the experimental substructure are fed back to determine the loading commands of the next time step. The unique aspect of the aforementioned hybrid simulation method is the versatile implementation of inertia forces and a force-based substructuring. The general formulation of RTHS enables this hybrid simulation method being executed as real-time pseudodynamic (PSD) testing, dynamic testing, and a combination of both, depending on the availability of the laboratory testing equipment and their capacity. The derivation of the general formulation and the corresponding testing system are presented in this paper. Numerical simulation and physical experiment were conducted on the RTHS of a three-story structural model. Simulation and experimental results verify the concept of the proposed general formulation of RTHS and the feasibility of the developed corresponding controller platform.
    • Download: (707.8Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Real-Time Hybrid Simulation Using Shake Tables and Dynamic Actuators

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/68212
    Collections
    • Journal of Structural Engineering

    Show full item record

    contributor authorXiaoyun Shao
    contributor authorAndrei M. Reinhorn
    contributor authorMettupalayam V. Sivaselvan
    date accessioned2017-05-08T21:59:20Z
    date available2017-05-08T21:59:20Z
    date copyrightJuly 2011
    date issued2011
    identifier other%28asce%29st%2E1943-541x%2E0000353.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/68212
    description abstractThe development and implementation of the real-time hybrid simulation (RTHS), a seismic response simulation method with a combination of numerical computation and physical specimens excited by shake tables and auxiliary actuators, are presented. The structure to be simulated is divided into one or more experimental and computational substructures. The loadings generated by the seismic excitations at the interfaces between the experimental and computational substructures, in terms of accelerations and forces, are imposed by shake tables and actuators in a step-by-step manner at a real-time rate. The measured displacement and velocity responses of the experimental substructure are fed back to determine the loading commands of the next time step. The unique aspect of the aforementioned hybrid simulation method is the versatile implementation of inertia forces and a force-based substructuring. The general formulation of RTHS enables this hybrid simulation method being executed as real-time pseudodynamic (PSD) testing, dynamic testing, and a combination of both, depending on the availability of the laboratory testing equipment and their capacity. The derivation of the general formulation and the corresponding testing system are presented in this paper. Numerical simulation and physical experiment were conducted on the RTHS of a three-story structural model. Simulation and experimental results verify the concept of the proposed general formulation of RTHS and the feasibility of the developed corresponding controller platform.
    publisherAmerican Society of Civil Engineers
    titleReal-Time Hybrid Simulation Using Shake Tables and Dynamic Actuators
    typeJournal Paper
    journal volume137
    journal issue7
    journal titleJournal of Structural Engineering
    identifier doi10.1061/(ASCE)ST.1943-541X.0000314
    treeJournal of Structural Engineering:;2011:;Volume ( 137 ):;issue: 007
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian