YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Analysis of Tall Buildings with Damped Outriggers

    Source: Journal of Structural Engineering:;2010:;Volume ( 136 ):;issue: 011
    Author:
    Y. Chen
    ,
    D. M. McFarland
    ,
    Z. Wang
    ,
    B. F. Spencer Jr.
    ,
    L. A. Bergman
    DOI: 10.1061/(ASCE)ST.1943-541X.0000247
    Publisher: American Society of Civil Engineers
    Abstract: A novel damped outrigger system has been recently proposed for tall buildings, and is quite promising. To gain insight into the conceptual design of such systems, a simple beam-damper system model for a building with such dampers installed is developed and studied. A partial differential equation governing the motion is derived assuming a Bernoulli-Euler beam. A closed-form analytical solution is developed for vibration of the beam by analyzing the regions above and below the damper separately using separation of variables. By applying appropriate boundary conditions at the ends, a transcendental characteristic equation is obtained that governs the system’s complex natural frequencies. An explicit form for the complex mode shape is determined for dynamic analysis. A numerical iteration scheme is adopted to solve the characteristic equation for the complex eigenvalues (i.e., the system modal frequencies and damping ratios). This solution was used to determine design curves for optimal damper position and size. For engineering convenience, empirical equations were provided by fitting numerical results. These equations include one for determining the optimal location of the damper for each mode, and two for determining the optimal damping coefficient of the damper, and for calculating the maximum modal damping ratio of the system while the beam vibrates in its first mode. Furthermore, relatively accurate approximations of the pseudoundamped natural frequency and damping ratio of the first mode were obtained using a Taylor expansion of the characteristic equation. All of the results obtained are nondimensionalized for convenience of analysis and application.
    • Download: (876.9Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Analysis of Tall Buildings with Damped Outriggers

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/68139
    Collections
    • Journal of Structural Engineering

    Show full item record

    contributor authorY. Chen
    contributor authorD. M. McFarland
    contributor authorZ. Wang
    contributor authorB. F. Spencer Jr.
    contributor authorL. A. Bergman
    date accessioned2017-05-08T21:59:10Z
    date available2017-05-08T21:59:10Z
    date copyrightNovember 2010
    date issued2010
    identifier other%28asce%29st%2E1943-541x%2E0000287.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/68139
    description abstractA novel damped outrigger system has been recently proposed for tall buildings, and is quite promising. To gain insight into the conceptual design of such systems, a simple beam-damper system model for a building with such dampers installed is developed and studied. A partial differential equation governing the motion is derived assuming a Bernoulli-Euler beam. A closed-form analytical solution is developed for vibration of the beam by analyzing the regions above and below the damper separately using separation of variables. By applying appropriate boundary conditions at the ends, a transcendental characteristic equation is obtained that governs the system’s complex natural frequencies. An explicit form for the complex mode shape is determined for dynamic analysis. A numerical iteration scheme is adopted to solve the characteristic equation for the complex eigenvalues (i.e., the system modal frequencies and damping ratios). This solution was used to determine design curves for optimal damper position and size. For engineering convenience, empirical equations were provided by fitting numerical results. These equations include one for determining the optimal location of the damper for each mode, and two for determining the optimal damping coefficient of the damper, and for calculating the maximum modal damping ratio of the system while the beam vibrates in its first mode. Furthermore, relatively accurate approximations of the pseudoundamped natural frequency and damping ratio of the first mode were obtained using a Taylor expansion of the characteristic equation. All of the results obtained are nondimensionalized for convenience of analysis and application.
    publisherAmerican Society of Civil Engineers
    titleAnalysis of Tall Buildings with Damped Outriggers
    typeJournal Paper
    journal volume136
    journal issue11
    journal titleJournal of Structural Engineering
    identifier doi10.1061/(ASCE)ST.1943-541X.0000247
    treeJournal of Structural Engineering:;2010:;Volume ( 136 ):;issue: 011
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian