YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    In-Plane Experimental Testing of Timber-Concrete Composite Floor Diaphragms

    Source: Journal of Structural Engineering:;2010:;Volume ( 136 ):;issue: 011
    Author:
    Michael P. Newcombe
    ,
    Wouter A. van Beerschoten
    ,
    David Carradine
    ,
    Stefano Pampanin
    ,
    Andrew H. Buchanan
    DOI: 10.1061/(ASCE)ST.1943-541X.0000239
    Publisher: American Society of Civil Engineers
    Abstract: Recent advances in multistory timber building design have led to new structural systems that allow open floor plans with large spans between frames and/or walls. Timber-concrete composite (TCC) flooring can achieve the spans required but has the potential to be flexible under diaphragm actions, which can significantly alter the seismic response of a building. In-plane experimental tests on a 3 m by 3 m one-third scale TCC floor were performed using quasi-static earthquake loading simulation. The experimental results indicate that the deformation between the floor and lateral load resisting systems (LLRS) is much greater than the in-plane deformation of the floor diaphragm. Hence, a floor system with similar aspect ratio can be modeled as a single-degree-of-freedom for future structural analyses. Different connections were considered between the floor unit and lateral restraints, which simulate the LLRS. The connection was either timber-to-timber or concrete-to-timber and incorporated screws or nails acting as dowels or inclined at 45°. Each connection type performed differently in terms of stiffness, strength, ductility capacity, and induced damage. Screws that were oriented at 45° to the connection interface were significantly stiffer than fasteners aligned orthogonal to the interface. There was little difference in the initial stiffness for the concrete-to-timber connection compared to the timber-to-timber connection. The testing indicated that a timber-to-timber interface is more desirable because of construction ease and reparability. The in-plane response of the floor system is modeled using finite elements and compared to experimental results. Design recommendations are provided for the cyclic strength of inclined wood fasteners.
    • Download: (719.2Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      In-Plane Experimental Testing of Timber-Concrete Composite Floor Diaphragms

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/68130
    Collections
    • Journal of Structural Engineering

    Show full item record

    contributor authorMichael P. Newcombe
    contributor authorWouter A. van Beerschoten
    contributor authorDavid Carradine
    contributor authorStefano Pampanin
    contributor authorAndrew H. Buchanan
    date accessioned2017-05-08T21:59:09Z
    date available2017-05-08T21:59:09Z
    date copyrightNovember 2010
    date issued2010
    identifier other%28asce%29st%2E1943-541x%2E0000278.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/68130
    description abstractRecent advances in multistory timber building design have led to new structural systems that allow open floor plans with large spans between frames and/or walls. Timber-concrete composite (TCC) flooring can achieve the spans required but has the potential to be flexible under diaphragm actions, which can significantly alter the seismic response of a building. In-plane experimental tests on a 3 m by 3 m one-third scale TCC floor were performed using quasi-static earthquake loading simulation. The experimental results indicate that the deformation between the floor and lateral load resisting systems (LLRS) is much greater than the in-plane deformation of the floor diaphragm. Hence, a floor system with similar aspect ratio can be modeled as a single-degree-of-freedom for future structural analyses. Different connections were considered between the floor unit and lateral restraints, which simulate the LLRS. The connection was either timber-to-timber or concrete-to-timber and incorporated screws or nails acting as dowels or inclined at 45°. Each connection type performed differently in terms of stiffness, strength, ductility capacity, and induced damage. Screws that were oriented at 45° to the connection interface were significantly stiffer than fasteners aligned orthogonal to the interface. There was little difference in the initial stiffness for the concrete-to-timber connection compared to the timber-to-timber connection. The testing indicated that a timber-to-timber interface is more desirable because of construction ease and reparability. The in-plane response of the floor system is modeled using finite elements and compared to experimental results. Design recommendations are provided for the cyclic strength of inclined wood fasteners.
    publisherAmerican Society of Civil Engineers
    titleIn-Plane Experimental Testing of Timber-Concrete Composite Floor Diaphragms
    typeJournal Paper
    journal volume136
    journal issue11
    journal titleJournal of Structural Engineering
    identifier doi10.1061/(ASCE)ST.1943-541X.0000239
    treeJournal of Structural Engineering:;2010:;Volume ( 136 ):;issue: 011
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian