YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Modified Elastofiber Element for Steel Slender Column and Brace Modeling

    Source: Journal of Structural Engineering:;2010:;Volume ( 136 ):;issue: 011
    Author:
    Swaminathan Krishnan
    DOI: 10.1061/(ASCE)ST.1943-541X.0000238
    Publisher: American Society of Civil Engineers
    Abstract: An efficient beam element, the modified elastofiber (MEF) element, has been developed to capture the overall features of the elastic and inelastic responses of slender columns and braces under axial cyclic loading without unduly heavy discretization. It consists of three fiber segments, two at the member ends and one at midspan, with two elastic segments sandwiched in between. The segments are demarcated by two exterior nodes and four interior nodes. The fiber segments are divided into 20 fibers in the cross section that run the length of the segment. The fibers exhibit nonlinear axial stress-strain behavior akin to that observed in a standard tension test of a rod in the laboratory, with a linear elastic portion, a yield plateau, and a strain-hardening portion consisting of a segment of an ellipse. All the control points on the stress-strain law are user defined. The elastic buckling of a member is tracked by updating both exterior and interior nodal coordinates at each iteration of a time step and checking force equilibrium in the updated configuration. Inelastic postbuckling response is captured by fiber yielding, fracturing, and/or rupturing in the nonlinear segments. The key features of the element include the ability to model each member using a single element, easy incorporation of geometric imperfection, partial fixity support conditions, member susceptibility to fracture defined in a probabilistic manner, and fiber rupture leading to complete severing of the member. The element is calibrated to accurately predict the Euler critical buckling load of box and I sections with a wide range of slenderness ratios (
    • Download: (978.5Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Modified Elastofiber Element for Steel Slender Column and Brace Modeling

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/68129
    Collections
    • Journal of Structural Engineering

    Show full item record

    contributor authorSwaminathan Krishnan
    date accessioned2017-05-08T21:59:09Z
    date available2017-05-08T21:59:09Z
    date copyrightNovember 2010
    date issued2010
    identifier other%28asce%29st%2E1943-541x%2E0000277.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/68129
    description abstractAn efficient beam element, the modified elastofiber (MEF) element, has been developed to capture the overall features of the elastic and inelastic responses of slender columns and braces under axial cyclic loading without unduly heavy discretization. It consists of three fiber segments, two at the member ends and one at midspan, with two elastic segments sandwiched in between. The segments are demarcated by two exterior nodes and four interior nodes. The fiber segments are divided into 20 fibers in the cross section that run the length of the segment. The fibers exhibit nonlinear axial stress-strain behavior akin to that observed in a standard tension test of a rod in the laboratory, with a linear elastic portion, a yield plateau, and a strain-hardening portion consisting of a segment of an ellipse. All the control points on the stress-strain law are user defined. The elastic buckling of a member is tracked by updating both exterior and interior nodal coordinates at each iteration of a time step and checking force equilibrium in the updated configuration. Inelastic postbuckling response is captured by fiber yielding, fracturing, and/or rupturing in the nonlinear segments. The key features of the element include the ability to model each member using a single element, easy incorporation of geometric imperfection, partial fixity support conditions, member susceptibility to fracture defined in a probabilistic manner, and fiber rupture leading to complete severing of the member. The element is calibrated to accurately predict the Euler critical buckling load of box and I sections with a wide range of slenderness ratios (
    publisherAmerican Society of Civil Engineers
    titleModified Elastofiber Element for Steel Slender Column and Brace Modeling
    typeJournal Paper
    journal volume136
    journal issue11
    journal titleJournal of Structural Engineering
    identifier doi10.1061/(ASCE)ST.1943-541X.0000238
    treeJournal of Structural Engineering:;2010:;Volume ( 136 ):;issue: 011
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian