YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Probabilistic Push-Over Analysis of Structural and Soil-Structure Systems

    Source: Journal of Structural Engineering:;2010:;Volume ( 136 ):;issue: 011
    Author:
    M. Barbato
    ,
    Q. Gu
    ,
    J. P. Conte
    DOI: 10.1061/(ASCE)ST.1943-541X.0000231
    Publisher: American Society of Civil Engineers
    Abstract: In this paper, the mean-centered first-order second-moment (FOSM) method is employed to perform probabilistic push-over analysis (POA) of structural and/or soil-structure systems. Approximations of first and second statistical moments (FSSMs) of engineering demand parameters (EDPs) of structural and/or geotechnical systems with random material parameters are computed based on finite-element (FE) response and response sensitivity analysis (RSA) results. The FE RSA is performed accurately and efficiently by using the direct differentiation method (DDM) and is employed to evaluate the relative importance (RI) of the various modeling material parameters in influencing the variability of the EDPs. The proposed approximate methodology is illustrated through probabilistic POA results for nonlinear inelastic FE models of: (1) a three-story reinforced-concrete (RC) frame building and (2) a soil-foundation-structure interaction system consisting of a RC frame structure founded on layered soil. FSSMs of EDPs computed through the FOSM method are compared with the corresponding accurate estimates obtained via Monte Carlo simulation. Results obtained from “exact” (or “local”) and “averaged” (or “global”) response sensitivities are also compared. The RI of the material parameters describing the systems is studied in both the deterministic and probabilistic sense, and presented in the form of tornado diagrams. Effects of statistical correlation between material parameters are also considered and analyzed by the FOSM method. A simple approximation of the probability density function and cumulative distribution function of EDPs due to a single random parameter at a time (while all the other parameters are fixed to their mean values) is also proposed. Conclusions are drawn on both the appropriateness of using local RSA for simplified probabilistic POA and on the application limits of the FOSM method. It is observed that the FOSM method combined with the DDM provides accurate estimates of FSSMs of EDPs for low-to-moderate level of inelastic structural or system behavior and useful qualitative information on the RI ranking of material parameters on the structural or system response for high level of inelastic behavior.
    • Download: (183.1Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Probabilistic Push-Over Analysis of Structural and Soil-Structure Systems

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/68122
    Collections
    • Journal of Structural Engineering

    Show full item record

    contributor authorM. Barbato
    contributor authorQ. Gu
    contributor authorJ. P. Conte
    date accessioned2017-05-08T21:59:09Z
    date available2017-05-08T21:59:09Z
    date copyrightNovember 2010
    date issued2010
    identifier other%28asce%29st%2E1943-541x%2E0000270.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/68122
    description abstractIn this paper, the mean-centered first-order second-moment (FOSM) method is employed to perform probabilistic push-over analysis (POA) of structural and/or soil-structure systems. Approximations of first and second statistical moments (FSSMs) of engineering demand parameters (EDPs) of structural and/or geotechnical systems with random material parameters are computed based on finite-element (FE) response and response sensitivity analysis (RSA) results. The FE RSA is performed accurately and efficiently by using the direct differentiation method (DDM) and is employed to evaluate the relative importance (RI) of the various modeling material parameters in influencing the variability of the EDPs. The proposed approximate methodology is illustrated through probabilistic POA results for nonlinear inelastic FE models of: (1) a three-story reinforced-concrete (RC) frame building and (2) a soil-foundation-structure interaction system consisting of a RC frame structure founded on layered soil. FSSMs of EDPs computed through the FOSM method are compared with the corresponding accurate estimates obtained via Monte Carlo simulation. Results obtained from “exact” (or “local”) and “averaged” (or “global”) response sensitivities are also compared. The RI of the material parameters describing the systems is studied in both the deterministic and probabilistic sense, and presented in the form of tornado diagrams. Effects of statistical correlation between material parameters are also considered and analyzed by the FOSM method. A simple approximation of the probability density function and cumulative distribution function of EDPs due to a single random parameter at a time (while all the other parameters are fixed to their mean values) is also proposed. Conclusions are drawn on both the appropriateness of using local RSA for simplified probabilistic POA and on the application limits of the FOSM method. It is observed that the FOSM method combined with the DDM provides accurate estimates of FSSMs of EDPs for low-to-moderate level of inelastic structural or system behavior and useful qualitative information on the RI ranking of material parameters on the structural or system response for high level of inelastic behavior.
    publisherAmerican Society of Civil Engineers
    titleProbabilistic Push-Over Analysis of Structural and Soil-Structure Systems
    typeJournal Paper
    journal volume136
    journal issue11
    journal titleJournal of Structural Engineering
    identifier doi10.1061/(ASCE)ST.1943-541X.0000231
    treeJournal of Structural Engineering:;2010:;Volume ( 136 ):;issue: 011
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian