YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Earthquake Accelerogram Selection and Scaling Procedures for Estimating the Distribution of Drift Response

    Source: Journal of Structural Engineering:;2011:;Volume ( 137 ):;issue: 003
    Author:
    Nicola Buratti
    ,
    Peter J. Stafford
    ,
    Julian J. Bommer
    DOI: 10.1061/(ASCE)ST.1943-541X.0000217
    Publisher: American Society of Civil Engineers
    Abstract: The problem of selecting a suite of earthquake accelerograms for time-domain analyses is of particular practical and academic interest. Research in this field has led to numerous approaches for compiling suites of accelerograms that may be used to robustly estimate the median structural response. However, many applications in earthquake engineering require the estimation of the full distribution of a structural response parameter for a particular predefined scenario. This article presents an efficient procedure whereby the distributions of interstory or roof drifts may be well approximated. The procedure makes use of three-point approximations to continuous distributions and the strong correlation that exists between the spectral acceleration at the initial fundamental period of the structure and the drift response. The distributions obtained under the proposed approach are compared with a reference distribution assumed to represent the true underlying distribution of drift response. The reference distribution is defined through a regression analysis conducted on the results of time-domain analyses of a six-story reinforced-concrete frame building subjected to 1,666 unscaled natural accelerograms. The results indicate that robust estimates of the first and second moments of the distribution of logarithmic drift may be obtained by subjecting the structure to several accelerograms scaled to match three target spectra over a range of periods. The target spectra are defined by the numbers of standard deviations above or below the median 5%-damped spectral acceleration and correspond to the roots of a third-order Hermite polynomial. The results demonstrate that consideration of fifth-order Hermite polynomials does not lead to a significantly improved performance of the approach.
    • Download: (156.7Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Earthquake Accelerogram Selection and Scaling Procedures for Estimating the Distribution of Drift Response

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/68106
    Collections
    • Journal of Structural Engineering

    Show full item record

    contributor authorNicola Buratti
    contributor authorPeter J. Stafford
    contributor authorJulian J. Bommer
    date accessioned2017-05-08T21:59:07Z
    date available2017-05-08T21:59:07Z
    date copyrightMarch 2011
    date issued2011
    identifier other%28asce%29st%2E1943-541x%2E0000256.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/68106
    description abstractThe problem of selecting a suite of earthquake accelerograms for time-domain analyses is of particular practical and academic interest. Research in this field has led to numerous approaches for compiling suites of accelerograms that may be used to robustly estimate the median structural response. However, many applications in earthquake engineering require the estimation of the full distribution of a structural response parameter for a particular predefined scenario. This article presents an efficient procedure whereby the distributions of interstory or roof drifts may be well approximated. The procedure makes use of three-point approximations to continuous distributions and the strong correlation that exists between the spectral acceleration at the initial fundamental period of the structure and the drift response. The distributions obtained under the proposed approach are compared with a reference distribution assumed to represent the true underlying distribution of drift response. The reference distribution is defined through a regression analysis conducted on the results of time-domain analyses of a six-story reinforced-concrete frame building subjected to 1,666 unscaled natural accelerograms. The results indicate that robust estimates of the first and second moments of the distribution of logarithmic drift may be obtained by subjecting the structure to several accelerograms scaled to match three target spectra over a range of periods. The target spectra are defined by the numbers of standard deviations above or below the median 5%-damped spectral acceleration and correspond to the roots of a third-order Hermite polynomial. The results demonstrate that consideration of fifth-order Hermite polynomials does not lead to a significantly improved performance of the approach.
    publisherAmerican Society of Civil Engineers
    titleEarthquake Accelerogram Selection and Scaling Procedures for Estimating the Distribution of Drift Response
    typeJournal Paper
    journal volume137
    journal issue3
    journal titleJournal of Structural Engineering
    identifier doi10.1061/(ASCE)ST.1943-541X.0000217
    treeJournal of Structural Engineering:;2011:;Volume ( 137 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian