YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Alternative Strategies to Enhance the Seismic Performance of Reinforced Concrete-Block Shear Wall Systems

    Source: Journal of Structural Engineering:;2010:;Volume ( 136 ):;issue: 006
    Author:
    Marwan T. Shedid
    ,
    Wael W. El-Dakhakhni
    ,
    Robert G. Drysdale
    DOI: 10.1061/(ASCE)ST.1943-541X.0000164
    Publisher: American Society of Civil Engineers
    Abstract: In this paper, seven reinforced concrete-block shear walls with aspect ratios of 1.5 and 2.2 (two- and three-storey high) were tested under displacement-controlled cyclic loading. The response of rectangular, flanged, and end-confined walls, designed to have the same lateral resistance when subjected to the same axial load, is discussed. In general, high levels of ductility accompanied by relatively small strength degradation were observed in all walls with a significant increase in ductility and displacement capabilities for the flanged and end-confined walls compared to the rectangular ones. For both aspect ratios evaluated, the drift levels at 20% strength degradation were 1.0, 1.5, and 2.2% corresponding to the rectangular, the flanged, and the end-confined walls, respectively. The ductility values of the proposed flanged and end-confined walls were, respectively, 1.5 and 2 times those of their rectangular wall counterparts (with the same overall length and aspect ratio). In addition to the enhanced ductility, a saving of more than 40% in the amount of vertical reinforcement was achieved using the proposed alternative strategies while maintaining the same lateral wall resistance. Existing design clauses were used to predict the wall capacities using the American and the Canadian masonry codes and showed excellent agreement. This will facilitate adoption of the new construction categories with minimal modifications to existing code clauses. The test results indicate that higher ductility than the currently endorsed values by North American codes should be used for rectangular walls. Moreover, higher values should be expected when the proposed strategies are adopted which would significantly reduce the seismic demand on reinforced concrete-block shear wall construction.
    • Download: (590.2Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Alternative Strategies to Enhance the Seismic Performance of Reinforced Concrete-Block Shear Wall Systems

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/68051
    Collections
    • Journal of Structural Engineering

    Show full item record

    contributor authorMarwan T. Shedid
    contributor authorWael W. El-Dakhakhni
    contributor authorRobert G. Drysdale
    date accessioned2017-05-08T21:59:02Z
    date available2017-05-08T21:59:02Z
    date copyrightJune 2010
    date issued2010
    identifier other%28asce%29st%2E1943-541x%2E0000207.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/68051
    description abstractIn this paper, seven reinforced concrete-block shear walls with aspect ratios of 1.5 and 2.2 (two- and three-storey high) were tested under displacement-controlled cyclic loading. The response of rectangular, flanged, and end-confined walls, designed to have the same lateral resistance when subjected to the same axial load, is discussed. In general, high levels of ductility accompanied by relatively small strength degradation were observed in all walls with a significant increase in ductility and displacement capabilities for the flanged and end-confined walls compared to the rectangular ones. For both aspect ratios evaluated, the drift levels at 20% strength degradation were 1.0, 1.5, and 2.2% corresponding to the rectangular, the flanged, and the end-confined walls, respectively. The ductility values of the proposed flanged and end-confined walls were, respectively, 1.5 and 2 times those of their rectangular wall counterparts (with the same overall length and aspect ratio). In addition to the enhanced ductility, a saving of more than 40% in the amount of vertical reinforcement was achieved using the proposed alternative strategies while maintaining the same lateral wall resistance. Existing design clauses were used to predict the wall capacities using the American and the Canadian masonry codes and showed excellent agreement. This will facilitate adoption of the new construction categories with minimal modifications to existing code clauses. The test results indicate that higher ductility than the currently endorsed values by North American codes should be used for rectangular walls. Moreover, higher values should be expected when the proposed strategies are adopted which would significantly reduce the seismic demand on reinforced concrete-block shear wall construction.
    publisherAmerican Society of Civil Engineers
    titleAlternative Strategies to Enhance the Seismic Performance of Reinforced Concrete-Block Shear Wall Systems
    typeJournal Paper
    journal volume136
    journal issue6
    journal titleJournal of Structural Engineering
    identifier doi10.1061/(ASCE)ST.1943-541X.0000164
    treeJournal of Structural Engineering:;2010:;Volume ( 136 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian