YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Methodology for Wind-Driven Rainwater Intrusion Fragilities for Light-Frame Wood Roof Systems

    Source: Journal of Structural Engineering:;2010:;Volume ( 136 ):;issue: 006
    Author:
    Thang N. Dao
    ,
    John W. van de Lindt
    DOI: 10.1061/(ASCE)ST.1943-541X.0000162
    Publisher: American Society of Civil Engineers
    Abstract: Light-frame wood buildings represent most of residential structures throughout the United States. Approximately half of the U.S. population lives within 50 miles of the coast with many of those dwellings in the Gulf Coast region or along the eastern seaboard, both of which can be negatively impacted by hurricanes. The majority of damage during a hurricane is the result of wind-driven rainwater entering a building through openings caused by strong wind. To date, wind fragility approaches to examine the probability of damage to a light-frame wood building have focused only on component or subassembly strength, thereby providing information up to the point of first failure of the building envelope. These previous analyses, while valuable, will not allow hurricane engineering research to progress to fully mechanistic loss modeling, which is needed to mitigate losses caused by these events. In this paper a methodology to develop fragility curves and fragility surfaces for the volume of rainwater intrusion is summarized and demonstrated on an example structure. To do this, nonlinear structural analysis, computational fluid dynamics, and reliability theory are combined with particle dynamics for rainwater trajectory modeling, essentially providing the first fragilities of their kind and going beyond first failure of the building envelope. It should be emphasized that it is the methodology that is the focus and some level of calibration is still necessary.
    • Download: (1.323Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Methodology for Wind-Driven Rainwater Intrusion Fragilities for Light-Frame Wood Roof Systems

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/68049
    Collections
    • Journal of Structural Engineering

    Show full item record

    contributor authorThang N. Dao
    contributor authorJohn W. van de Lindt
    date accessioned2017-05-08T21:59:02Z
    date available2017-05-08T21:59:02Z
    date copyrightJune 2010
    date issued2010
    identifier other%28asce%29st%2E1943-541x%2E0000205.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/68049
    description abstractLight-frame wood buildings represent most of residential structures throughout the United States. Approximately half of the U.S. population lives within 50 miles of the coast with many of those dwellings in the Gulf Coast region or along the eastern seaboard, both of which can be negatively impacted by hurricanes. The majority of damage during a hurricane is the result of wind-driven rainwater entering a building through openings caused by strong wind. To date, wind fragility approaches to examine the probability of damage to a light-frame wood building have focused only on component or subassembly strength, thereby providing information up to the point of first failure of the building envelope. These previous analyses, while valuable, will not allow hurricane engineering research to progress to fully mechanistic loss modeling, which is needed to mitigate losses caused by these events. In this paper a methodology to develop fragility curves and fragility surfaces for the volume of rainwater intrusion is summarized and demonstrated on an example structure. To do this, nonlinear structural analysis, computational fluid dynamics, and reliability theory are combined with particle dynamics for rainwater trajectory modeling, essentially providing the first fragilities of their kind and going beyond first failure of the building envelope. It should be emphasized that it is the methodology that is the focus and some level of calibration is still necessary.
    publisherAmerican Society of Civil Engineers
    titleMethodology for Wind-Driven Rainwater Intrusion Fragilities for Light-Frame Wood Roof Systems
    typeJournal Paper
    journal volume136
    journal issue6
    journal titleJournal of Structural Engineering
    identifier doi10.1061/(ASCE)ST.1943-541X.0000162
    treeJournal of Structural Engineering:;2010:;Volume ( 136 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian