YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Dynamic Crack Propagations in Prestressed Concrete Sleepers in Railway Track Systems Subjected to Severe Impact Loads

    Source: Journal of Structural Engineering:;2010:;Volume ( 136 ):;issue: 006
    Author:
    Sakdirat Kaewunruen
    ,
    Alex M. Remennikov
    DOI: 10.1061/(ASCE)ST.1943-541X.0000152
    Publisher: American Society of Civil Engineers
    Abstract: Prestressed concrete sleepers (or railroad ties) are the crosstie beam support in railway track systems. They are designed and constructed under flexural constraints in order to carry and transfer the dynamic wheel loads from the rails to the ground. Under perfect wheel and rail conditions, the dynamic loading on railway tracks could be treated as a quasi-static load using a dynamic impact factor. The current design method for the prestressed concrete sleepers taking into account the quasi-static effect is based on allowable stress where crack initiation is not permitted. In reality, the impact events are often detected due to the uncertainties of wheel or rail abnormalities such as flat wheels, dipped rails, etc. These loads are of very high magnitude but short duration. Over the design life span of the prestressed concrete sleepers, there exists the feasibility of extreme and repeated impact loading events. These have led to two proposed limit states for the consideration of structural engineers: ultimate limit states and fatigue limit states. Prestressing techniques have been long used to maintain the high endurance of the sleepers under repeated impact cycles. In spite of the most common use of the prestressed concrete sleepers, their impact behavior and capacity under the repetitions of severe impact loads are unclear. This paper presents the experimental investigation aimed at understanding the dynamic crack propagations in prestressed concrete sleepers in railway track structures under repeated impact loading. The impact forces have been correlated against the probabilistic track force distribution obtained from an Australian heavy haul rail network. The effects of track environment including soft and hard tracks are highlighted in this paper.
    • Download: (1.274Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Dynamic Crack Propagations in Prestressed Concrete Sleepers in Railway Track Systems Subjected to Severe Impact Loads

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/68038
    Collections
    • Journal of Structural Engineering

    Show full item record

    contributor authorSakdirat Kaewunruen
    contributor authorAlex M. Remennikov
    date accessioned2017-05-08T21:59:01Z
    date available2017-05-08T21:59:01Z
    date copyrightJune 2010
    date issued2010
    identifier other%28asce%29st%2E1943-541x%2E0000195.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/68038
    description abstractPrestressed concrete sleepers (or railroad ties) are the crosstie beam support in railway track systems. They are designed and constructed under flexural constraints in order to carry and transfer the dynamic wheel loads from the rails to the ground. Under perfect wheel and rail conditions, the dynamic loading on railway tracks could be treated as a quasi-static load using a dynamic impact factor. The current design method for the prestressed concrete sleepers taking into account the quasi-static effect is based on allowable stress where crack initiation is not permitted. In reality, the impact events are often detected due to the uncertainties of wheel or rail abnormalities such as flat wheels, dipped rails, etc. These loads are of very high magnitude but short duration. Over the design life span of the prestressed concrete sleepers, there exists the feasibility of extreme and repeated impact loading events. These have led to two proposed limit states for the consideration of structural engineers: ultimate limit states and fatigue limit states. Prestressing techniques have been long used to maintain the high endurance of the sleepers under repeated impact cycles. In spite of the most common use of the prestressed concrete sleepers, their impact behavior and capacity under the repetitions of severe impact loads are unclear. This paper presents the experimental investigation aimed at understanding the dynamic crack propagations in prestressed concrete sleepers in railway track structures under repeated impact loading. The impact forces have been correlated against the probabilistic track force distribution obtained from an Australian heavy haul rail network. The effects of track environment including soft and hard tracks are highlighted in this paper.
    publisherAmerican Society of Civil Engineers
    titleDynamic Crack Propagations in Prestressed Concrete Sleepers in Railway Track Systems Subjected to Severe Impact Loads
    typeJournal Paper
    journal volume136
    journal issue6
    journal titleJournal of Structural Engineering
    identifier doi10.1061/(ASCE)ST.1943-541X.0000152
    treeJournal of Structural Engineering:;2010:;Volume ( 136 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian