YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Behavior of Hollow Tubular-Flange Girder Systems for Curved Bridges

    Source: Journal of Structural Engineering:;2010:;Volume ( 136 ):;issue: 002
    Author:
    Jun Dong
    ,
    Richard Sause
    DOI: 10.1061/(ASCE)ST.1943-541X.0000092
    Publisher: American Society of Civil Engineers
    Abstract: This paper describes research results for an innovative curved highway bridge girder system, which uses I-shaped steel girders with hollow rectangular tubes as flanges. The increased torsional stiffness provided by the tubular flanges dramatically improves the structural behavior of the curved girders, resulting in substantially reduced deflection, cross section rotation, and stress compared to conventional curved I-shaped steel plate girders. In this paper, finite-element (FE) models for systems of curved tubular-flange girders are described. The models consider material inelasticity, second-order effects, initial geometric imperfection, and residual stresses. The girder systems are comprised of curved hollow tubular-flange girders (CHTFGs), cross frames between the CHTFGs, and a concrete deck. A parametric study is performed using the FE models to study the effects of web stiffeners, tube diaphragms, geometric imperfection, and residual stresses on the load capacity of three-girder systems with CHTFGs. Then, the results for the CHTFG systems are compared with results for corresponding conventional curved I-girder systems. The effects of the curvature, cross section dimensions, number of cross frames, and a concrete deck are investigated. The results indicate that the CHTFG systems are more structurally efficient than the corresponding curved I-girder systems.
    • Download: (1.558Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Behavior of Hollow Tubular-Flange Girder Systems for Curved Bridges

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/67982
    Collections
    • Journal of Structural Engineering

    Show full item record

    contributor authorJun Dong
    contributor authorRichard Sause
    date accessioned2017-05-08T21:58:56Z
    date available2017-05-08T21:58:56Z
    date copyrightFebruary 2010
    date issued2010
    identifier other%28asce%29st%2E1943-541x%2E0000137.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/67982
    description abstractThis paper describes research results for an innovative curved highway bridge girder system, which uses I-shaped steel girders with hollow rectangular tubes as flanges. The increased torsional stiffness provided by the tubular flanges dramatically improves the structural behavior of the curved girders, resulting in substantially reduced deflection, cross section rotation, and stress compared to conventional curved I-shaped steel plate girders. In this paper, finite-element (FE) models for systems of curved tubular-flange girders are described. The models consider material inelasticity, second-order effects, initial geometric imperfection, and residual stresses. The girder systems are comprised of curved hollow tubular-flange girders (CHTFGs), cross frames between the CHTFGs, and a concrete deck. A parametric study is performed using the FE models to study the effects of web stiffeners, tube diaphragms, geometric imperfection, and residual stresses on the load capacity of three-girder systems with CHTFGs. Then, the results for the CHTFG systems are compared with results for corresponding conventional curved I-girder systems. The effects of the curvature, cross section dimensions, number of cross frames, and a concrete deck are investigated. The results indicate that the CHTFG systems are more structurally efficient than the corresponding curved I-girder systems.
    publisherAmerican Society of Civil Engineers
    titleBehavior of Hollow Tubular-Flange Girder Systems for Curved Bridges
    typeJournal Paper
    journal volume136
    journal issue2
    journal titleJournal of Structural Engineering
    identifier doi10.1061/(ASCE)ST.1943-541X.0000092
    treeJournal of Structural Engineering:;2010:;Volume ( 136 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian