YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Generalization Capability of Neural Network Models for Temperature-Frequency Correlation Using Monitoring Data

    Source: Journal of Structural Engineering:;2009:;Volume ( 135 ):;issue: 010
    Author:
    Y. Q. Ni
    ,
    H. F. Zhou
    ,
    J. M. Ko
    DOI: 10.1061/(ASCE)ST.1943-541X.0000050
    Publisher: American Society of Civil Engineers
    Abstract: The parametric approach to eliminating the temperature-caused modal variability in vibration-based structural damage detection requires a correlation model between the modal properties and environmental temperatures. This paper examines the generalization capability of neural network models, established using long-term monitoring data, for correlation between the modal frequencies and environmental temperatures. A total of 770 h modal frequency and temperature data obtained from an instrumented bridge are available for this study, which are further divided into three sets: training data, validation data, and testing data. A two-layer back-propagation neural network (BPNN) is first trained using the training data by the conventional training algorithm, in which the number of hidden nodes is optimally determined using the validation data. Then two new BPNNs are configured with the same data by applying the early stopping technique and the Bayesian regularization technique, respectively. The reproduction and prediction capabilities of the two new BPNNs are examined in respect of the training data and the unseen testing data, and compared with the performance of the baseline BPNN model. This study indicates that both the early stopping and Bayesian regularization techniques can significantly ameliorate the generalization capability of BPNN-based correlation models, and the BPNN model formulated using the early stopping technique outperforms that using the Bayesian regularization technique in both reproduction and prediction capabilities.
    • Download: (529.7Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Generalization Capability of Neural Network Models for Temperature-Frequency Correlation Using Monitoring Data

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/67936
    Collections
    • Journal of Structural Engineering

    Show full item record

    contributor authorY. Q. Ni
    contributor authorH. F. Zhou
    contributor authorJ. M. Ko
    date accessioned2017-05-08T21:58:51Z
    date available2017-05-08T21:58:51Z
    date copyrightOctober 2009
    date issued2009
    identifier other%28asce%29st%2E1943-541x%2E0000091.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/67936
    description abstractThe parametric approach to eliminating the temperature-caused modal variability in vibration-based structural damage detection requires a correlation model between the modal properties and environmental temperatures. This paper examines the generalization capability of neural network models, established using long-term monitoring data, for correlation between the modal frequencies and environmental temperatures. A total of 770 h modal frequency and temperature data obtained from an instrumented bridge are available for this study, which are further divided into three sets: training data, validation data, and testing data. A two-layer back-propagation neural network (BPNN) is first trained using the training data by the conventional training algorithm, in which the number of hidden nodes is optimally determined using the validation data. Then two new BPNNs are configured with the same data by applying the early stopping technique and the Bayesian regularization technique, respectively. The reproduction and prediction capabilities of the two new BPNNs are examined in respect of the training data and the unseen testing data, and compared with the performance of the baseline BPNN model. This study indicates that both the early stopping and Bayesian regularization techniques can significantly ameliorate the generalization capability of BPNN-based correlation models, and the BPNN model formulated using the early stopping technique outperforms that using the Bayesian regularization technique in both reproduction and prediction capabilities.
    publisherAmerican Society of Civil Engineers
    titleGeneralization Capability of Neural Network Models for Temperature-Frequency Correlation Using Monitoring Data
    typeJournal Paper
    journal volume135
    journal issue10
    journal titleJournal of Structural Engineering
    identifier doi10.1061/(ASCE)ST.1943-541X.0000050
    treeJournal of Structural Engineering:;2009:;Volume ( 135 ):;issue: 010
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian