YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Frame Element for Metallic Shear-Yielding Members under Cyclic Loading

    Source: Journal of Structural Engineering:;2009:;Volume ( 135 ):;issue: 009
    Author:
    Afsin Saritas
    ,
    Filip C. Filippou
    DOI: 10.1061/(ASCE)ST.1943-541X.0000041
    Publisher: American Society of Civil Engineers
    Abstract: Modeling the energy dissipation capacity of shear-yielding members is important in the evaluation of the seismic response of earthquake resistant structural systems. This paper presents the model of a frame element for the hysteretic behavior of these members. The model is based on a three-field variational formulation with independent displacement, stress, and strain fields. The displacement field is based on the Timoshenko beam theory. The nonlinear response of the element is derived from the section integration of the multiaxial material stress-strain relation at several control points along the element, thus accounting for the interaction between normal and shear stress and the spread of inelastic deformations in the member. With the derivation of the axial force-shear-flexure interaction of short members from the material response the proposed model is general, in contrast to existing concentrated plasticity models that require parameter calibration for different loading and support conditions. Furthermore, the model does not suffer from shear locking and does not require mesh refinement for the accurate representation of inelastic member deformations. Correlation studies of analytical results with available experimental data of the hysteretic behavior of shear-yielding members confirm the capabilities of the proposed model. Its computational efficiency makes it suitable for large scale simulations of the earthquake response of structures with shear-yielding members.
    • Download: (786.5Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Frame Element for Metallic Shear-Yielding Members under Cyclic Loading

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/67926
    Collections
    • Journal of Structural Engineering

    Show full item record

    contributor authorAfsin Saritas
    contributor authorFilip C. Filippou
    date accessioned2017-05-08T21:58:50Z
    date available2017-05-08T21:58:50Z
    date copyrightSeptember 2009
    date issued2009
    identifier other%28asce%29st%2E1943-541x%2E0000082.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/67926
    description abstractModeling the energy dissipation capacity of shear-yielding members is important in the evaluation of the seismic response of earthquake resistant structural systems. This paper presents the model of a frame element for the hysteretic behavior of these members. The model is based on a three-field variational formulation with independent displacement, stress, and strain fields. The displacement field is based on the Timoshenko beam theory. The nonlinear response of the element is derived from the section integration of the multiaxial material stress-strain relation at several control points along the element, thus accounting for the interaction between normal and shear stress and the spread of inelastic deformations in the member. With the derivation of the axial force-shear-flexure interaction of short members from the material response the proposed model is general, in contrast to existing concentrated plasticity models that require parameter calibration for different loading and support conditions. Furthermore, the model does not suffer from shear locking and does not require mesh refinement for the accurate representation of inelastic member deformations. Correlation studies of analytical results with available experimental data of the hysteretic behavior of shear-yielding members confirm the capabilities of the proposed model. Its computational efficiency makes it suitable for large scale simulations of the earthquake response of structures with shear-yielding members.
    publisherAmerican Society of Civil Engineers
    titleFrame Element for Metallic Shear-Yielding Members under Cyclic Loading
    typeJournal Paper
    journal volume135
    journal issue9
    journal titleJournal of Structural Engineering
    identifier doi10.1061/(ASCE)ST.1943-541X.0000041
    treeJournal of Structural Engineering:;2009:;Volume ( 135 ):;issue: 009
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian