YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    FRP-Confined Self-Compacting Concrete under Axial Compression

    Source: Journal of Materials in Civil Engineering:;2014:;Volume ( 026 ):;issue: 011
    Author:
    T. Yu
    ,
    X. L. Fang
    ,
    J. G. Teng
    DOI: 10.1061/(ASCE)MT.1943-5533.0000993
    Publisher: American Society of Civil Engineers
    Abstract: Self-compacting concrete (SCC) has become increasingly popular in recent years, particularly in constructing heavily reinforced concrete structures cast with a stay-in-place form (e.g., concrete-filled tubular columns) where the quality of concrete is difficult to control and/or examine. When used in fiber-reinforced polymer (FRP) tubes, the SCC is subjected to confinement from the FRP tube. While many studies have been conducted on confined normal concrete (NC), research on confined SCC has been very limited. The few existing studies on confined SCC (e.g., steel-confined SCC and FRP-confined SCC) have shown that the behavior of confined SCC may be different from that of confined NC of the same unconfined strength. Against this background, this paper presents the results of a series of axial compression tests conducted to gain a better understanding of the behavior of FRP-confined SCC. The test variables included the concrete strength as well as the type and thickness of the FRP jacket. Similar to FRP-confined NC, the present tests showed that the strength and ductility of SCC can also be significantly enhanced by FRP confinement, and its stress-strain curve also has a bilinear shape. A comparison between the test results and an accurate stress-strain model developed for FRP-confined NC is also presented. The comparison shows that the behavior of FRP-confined SCC is generally similar to that of FRP-confined NC, although the lateral expansion of the former appears to be a little larger.
    • Download: (1.038Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      FRP-Confined Self-Compacting Concrete under Axial Compression

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/67393
    Collections
    • Journal of Materials in Civil Engineering

    Show full item record

    contributor authorT. Yu
    contributor authorX. L. Fang
    contributor authorJ. G. Teng
    date accessioned2017-05-08T21:57:29Z
    date available2017-05-08T21:57:29Z
    date copyrightNovember 2014
    date issued2014
    identifier other%28asce%29nh%2E1527-6996%2E0000039.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/67393
    description abstractSelf-compacting concrete (SCC) has become increasingly popular in recent years, particularly in constructing heavily reinforced concrete structures cast with a stay-in-place form (e.g., concrete-filled tubular columns) where the quality of concrete is difficult to control and/or examine. When used in fiber-reinforced polymer (FRP) tubes, the SCC is subjected to confinement from the FRP tube. While many studies have been conducted on confined normal concrete (NC), research on confined SCC has been very limited. The few existing studies on confined SCC (e.g., steel-confined SCC and FRP-confined SCC) have shown that the behavior of confined SCC may be different from that of confined NC of the same unconfined strength. Against this background, this paper presents the results of a series of axial compression tests conducted to gain a better understanding of the behavior of FRP-confined SCC. The test variables included the concrete strength as well as the type and thickness of the FRP jacket. Similar to FRP-confined NC, the present tests showed that the strength and ductility of SCC can also be significantly enhanced by FRP confinement, and its stress-strain curve also has a bilinear shape. A comparison between the test results and an accurate stress-strain model developed for FRP-confined NC is also presented. The comparison shows that the behavior of FRP-confined SCC is generally similar to that of FRP-confined NC, although the lateral expansion of the former appears to be a little larger.
    publisherAmerican Society of Civil Engineers
    titleFRP-Confined Self-Compacting Concrete under Axial Compression
    typeJournal Paper
    journal volume26
    journal issue11
    journal titleJournal of Materials in Civil Engineering
    identifier doi10.1061/(ASCE)MT.1943-5533.0000993
    treeJournal of Materials in Civil Engineering:;2014:;Volume ( 026 ):;issue: 011
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian